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Chapter D04 — Numerical Differentiation

Note. Please refer to the Users’ Note for your implementation to check that a routine is available.
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Name Introduction Purpose
DO4AAF 5 Numerical differentiation, derivatives up to order 14, function of one real
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1 Scope of the Chapter

This chapter is concerned with calculating approximations to derivatives of a function f, where the user
can supply a routine representing f.

2 Background to the Problems
2.1 Description of the Problem

The problem of numerical differentiation does not receive very much attention nowadays. Although the
Taylor series plays a key role in much of classical analysis, the poor reputation enjoyed by numerical
differentiation has led numerical analysts to construct techniques for most problems which avoid the
explicit use of numerical differentiation.

One may briefly and roughly define the term numerical differentiation as any process in which numerical
values of derivatives f(*)(z,) are obtained from evaluations f(z;) of the function f(z) at several abscissae
z; near z,. This problem can be stable, well conditioned, and accurate when complex-valued abscissae
are used. This was first pointed out by Lyness and Moler [1]. An item of numerical software for this
appears in Lyness and Sande [2]. However, in many applications the use of complex-valued abscissae is
either prohibitive or prohibited. The main difficulty in using real abscissae is that amplification of round-
off error can completely obliterate meaningful results. In the days when one relied on hand calculating
machines and tabular data, the frustration caused by this effect led to the abandonment of serious use
of the process.

There are several reasons for believing that, in the present-day computing environment, numerical
differentiation might find a useful role. The first is that, by present standards, it is rather a small-
scale calculation, so its cost may well be negligible compared with any overall saving in cost that might
result from its use. Secondly, the assignment of a step length h is now generally open. One does not
have to rely on tabular data. Thirdly, although the amplification of round-off error is an integral part of
the calculation, its effect can be measured reliably and automatically by the routine at the time of the
calculation.

Thus the user does not have to gauge the round-off level (or noise level) of the function values or assess
the effect of this on the accuracy of the results. A routine does this automatically, returning with each
result an error estimate which has already taken round-off error amplification into account.

We now illustrate, by means of a very simple example, the importance of the round-off error effect. A
very simple approximation of f’(0), based on the identity

F1(0) = (f(h) = f(=h))/2h + (h*/3) £ (), (1)
is
(f(h) = f(=h))/2h.
If there were no precision problem, this formula would be the only one needed in the theory of first-order
numerical differentiation. We could simply take h = 107%° (or A = 1071°%%) to obtain an excellent
approximation based on two function values. It is only when we consider in detail how a finite length

machine comes to calculate (f(h) — f(—h))/2h that the necessity for a sophisticated theory becomes
apparent.

To simplify the subsequent description we shall assume that the quantities involved are neither so close
to zero that the machine underflow characteristics need be considered nor so large that machine overflow
occurs. The approximation mentioned above involves the function values f(h) and f(—h). In general
no computer has available these numbers exactly. Instead it uses approximations f (h) and f (—h) whose
relative accuracy is less than some tolerance ¢;. If the function f(z) is a library function, for example
sinz, €; may coincide with the machine accuracy parameter €,,. More generally the function f(z) is
calculated in a user-supplied routine and ¢, is larger than ¢, by a small factor 5 or 6 if the calculation is
short or by some larger factor in an extended calculation. This factor is not usually known by the user.

f(h) and f(—h) are related to f(h) and f(—h) by:
f(h) = f(h)(1 +6;¢y), 16,/ <1

f(=h) = f(=h)(1 +b,¢;), 6] < 1.
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Thus even if the rest of the calculation were carried out exactly, it is trivial to show that

f(h) = f(=h) _ f(h) = f(=h) f©
2h 2h 2h

The difference between the quantity actually calculated and the quantity which one attempts to calculate
may be as large as ejf(ﬁ)/h; for example using h = 107*° and €,, = 107" this gives a ‘conditioning error’

of 1033 f(¢).

In practice much more sophisticated formulae than (1) above are used, and for these and for the
corresponding higher-derivative formulae the error analysis is different and more complicated in detail.
But invariably the theory contains the same overall feature. In a finite length calculation, the error is
composed of two main parts: a discretisation error which increases as h becomes large and is zero for
h = 0; and a ‘conditioning’ error due to amplification of round-off error in function evaluation, which
increases as h becomes small and is infinite for A = 0.

~ 2¢¢, 6] < 1.

The routine in this chapter has to take into account internally both these sources of error in the results.
Thus it returns pairs of results, DER(j) and EREST(j) where DER(j) is an approximation to F9(zq)
and EREST(j) is an estimate of the error in the approximation DER(j). If the routine has not been
misled, DER(j) and EREST(j) satisfy

IDER(j) — f¥)(z,)] < EREST(j).

In this respect, numerical differentiation routines are fundamentally different from other routines. The
user does not specify an error criterion. Instead the routine provides the error estimate and this may be
very large.

We mention here a terminological distinction. A fully automatic routine is one in which the user does not
need to provide any information other than that required to specify the problem. Such a routine (at a cost
in computing time) decides an appropriate internal parameter such as the step length h by itself. On the
other hand a routine which requires the user to provide a step length h, but automatically chooses from
several different formulae each based on the specified step length, is termed a semi-automatic routine.

The situation described above must have seemed rather depressing when hand machines were in common
use. For example in the simple illustration one does not know the values of the quantities f"/(£) or ¢ s
involved in the error estimates, and the idea of altering the value of h and starting again must have
seemed appalling. However by present-day standards, it is a relatively simple matter to write a program
which carries out all the previously considered time-consuming calculations which may seem necessary.
None of the routines envisaged for this chapter are particularly revolutionary in concept. They simply
utilise the computer for the sort of task for which it was originally designed. It carries out simple tedious
calculations which are necessary to estimate the accuracy of the results of other even simpler tedious
calculations.

2.2 Examples of Applications for Numerical Differentiation Routines

(a) One immediate use to which a set of derivatives at a point is likely to be put is that of constructing
a Taylor series representation:

nfG) ) (n+1)
@) = fleo) + Yo LB - oy + T e - gt el <
j=1

This infinite series converges so long as |z — z,| < R, (the radius of convergence) and it is only for
these values of « that such a series is likely to be used. In this case in forming the sum, the required
accuracy in fU)(z,) diminishes with increasing j.

The series formed from the Taylor series using elementary operations such as integration or
differentiation has the same overall characteristic. A technique based on a Taylor series expansion
may be quite accurate, even if the individual derivatives are not, so long as the less accurate
derivatives are associated with known small coefficients.

The error introduced by using n approximate derivatives DER(j) is bounded by:

>~ EREST(j) |& — 2,/ /3!

i=1
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Thus, if the user is prepared to base the result on a truncated Taylor series, the additional error
introduced by using approximate Taylor coefficients can be readily bounded from the values of
EREST(j). However in an automatic code the user must be prepared to introduce some alternative
approach in case this error bound turns out to be unduly high.

In this sort of application the accuracy of the result depends on the size of the errors in the numerical
differentiation. There are other applications where the effect of large errors EREST(5) is merely to
prolong a calculation, but not to impair the final accuracy.

(b) A simple Taylor series approach such as described in (a) is used to find a starting value for a rapidly
converging but extremely local iterative process.

(c) The technique known as ‘subtracting out the singularity’ as a preliminary to numerical quadrature
may be extended and may be carried out approximately. Thus suppose we are interested in
evaluating

1
[/ oo,
0

we have an automatic quadrature routine available, and we have a routine available for ¢(z) which

we know to be an analytic function. An integrand function like 2~(1/?)¢(z) is generally accepted

to be difficult for an automatic integrator because of the singularity. If ¢(z) and some of its
derivatives at the singularity z = 0 are known one may effectively ‘subtract out’ the singularity
using the following identity:

/1 e~ (Dg(z)dz = /1 = 12(g(z) — $(0) — Az — Bz?/2)dz + 26(0) + 24/3+ B/5  (2)

0 0
with A = ¢/(0) and B = ¢"(0).

The integrand function on the right of (2) has no singularity, but its third derivative does. Thus
using numerical quadrature for this integral is much cheaper than using numerical quadrature for
the original integral (in the left-hand side of (2)).

However (2) is an identity whatever values of A and B are assigned. Thus the same procedure can be
used with A and B being approximations to ¢'(0) and ¢”(0) provided by a numerical differentiation
routine. The integrand would now be more difficult to integrate than if A and B were correct but
still much less difficult than the original integrand (on the left-hand side of (2)). But, assuming that
the automatic quadrature routine is reliable, the overall result would still be correct. The effect
of using approximate derivatives rather than exact derivatives does not impair the accuracy of the
result. It simply makes the result more expensive to obtain, but not nearly as expensive as if no
derivatives were used at all.

(d) The calculation of a definite integral may be based on the Euler-Maclaurin expansion

/ fayda = £ f:”f(j/m) - §Ij By, (SO7DW) =SB =212y
0 m

j=0 s=1 25! m?e

Here B,, is a Bernoulli number. If one fixes a value of ! then as m is increased the right-hand side
(without the remainder term) approaches the true value of the integral. This statement remains true
whatever values are used to replace f(2*=1)(1) and f*~1)(0). If no derivatives are available, and
this formula is used (effectively with the derivatives replaced by zero) the rate of convergence is slow
(like m~2) and a large number of function evaluations may be used in calculating the trapezoidal
rule sum for large m before a sufficiently accurate result is attained. However if approximate
derivatives are used, the initial rate of convergence is enhanced. In fact, in this example any
derivative approximation which is closer than the approximation zero is helpful. Thus the use of
inaccurate derivatives may have the effect of shortening the overall calculation, since a sufficiently
accurate result may be obtained using a smaller value of m, without impairing the accuracy of
the result. (The resemblance with Gregory’s formula is superficial. Here [ is kept fixed and m is
increased, ensuring a convergent process.)

The examples given above are only intended to illustrate the sort of use to which approximate
derivatives may be put. Very simple illustrations have been used for clarity, and in such simple
cases there are usually more efficient approaches to the problem. The same ideas applied in a
more complicated or restrictive setting may provide an efficient approach to a problem for which
no simple standard approach exists.

D04.4 [NP3086/18]
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3

Recommendations on Choice and Use of Available Routines

Note. Refer to the Users’ Note for your implementation to check that a routine is available.

(a)

(d)

(1]

(2]

At the present time there is only one numerical differentiation routine available in this chapter,
DO04AAF. This is a semi-automatic routine for obtaining approximations to the first fourteen
derivatives of a real valued function f(z) at a specified point z,. The user provides a FUNCTION
representing f(z), the value of z,, an upper limit n < 14 on the order of the derivatives required
and a step length h. The routine returns a set of approximations DER(j) and corresponding error
estimates EREST(j) which hopefully satisfy

IDER(j) — f¥)(z,)] < EREST(j), j=1,2,...,n<14.

We term this routine a semi-automatic routine because the user provides a step length h and this
is not needed to specify the problem.

It is important that the error estimate EREST(j) is taken into consideration by the user before
any use of DER(j) is made. The actual size of EREST(j) depends on the analytic structure of
the function, on the word length of the machine used and on the step size h, and is difficult to
predict. Thus the user has to run the routine to find out how accurate the results are. Usually the
user will find the higher-order derivatives are successively more inaccurate and that past a certain
order, say 10 or 11, the size of EREST(j) actually exceeds DER(j). Clearly when this happens the
approximation DER(j) is unusable.

We have investigated a fully automatic routine, which has the same calling sequence with the
exception that a step length is not required. This routine finds an appropriate step length h for
itself. The cost seems to be greater by a factor of 3 to 5 but the returned values of EREST(j) are
usually smaller. It is our intention to develop such a routine only if there is a demand for it in
which case the experience of users with the presently available semi-automatic routine will be very
helpful.

There is available in the algorithm section of CACM [2] a semi-automatic Fortran routine for
numerical differentiation of an analytical function f(z) at a possibly complex abscissa z,. This is
a stable problem. It can be used for any problem for which DO4AAF might be used and produces
more accurate results, and derivatives of arbitrary high order. However even if z; is real and f(z)
1s real for z, this routine requires a user-supplied FUNCTION which evaluates f(z) for complex
values of z and it makes use of complex arithmetic.

Routines are available in Chapter E02 to differentiate functions which are polynomials (in
Chebyshev series representation) or cubic splines (in B-spline representation).

References

Lyness J N and Moler C B (1967) Numerical differentiation of analytic functions STAM J. Numer.
Anal. 4 (2) 202-210

Lyness J N and Ande G (1971) Algorithm 413, ENTCAF and ENTCRE: Evaluation of normalised
Taylor coefficients of an analytic function Comm. ACM 14 (10) 669-675
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DO04AAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

DO4AAF calculates a set of derivatives (up to order 14) of a function of one real variable at a
point, together with a corresponding set of error estimates, using an extension of the Neville
algorithm.

Specification
SUBROUTINE DO4AAF (XVAL, NDER, HBASE, DER, EREST, FUN, IFAIL)
INTEGER NDER, IFAIL
real XVAL, HBASE, DER(14), EREST(14), FUN
EXTERNAL FUN
Description

This routine provides a set of approximations:
DER (), j=12..,n
to the derivatives:

9 (x), j=12..n

of a real valued function f(x) at a real abscissa x,, together with a set of error estimates:
EREST(j), Jj=12,..n

which hopefully satisfy:
IDER (j)—fY (xo)| < EREST(j), j=12,...n.

The user provides the value of x,, a value of n (which is reduced to 14 should it exceed 14) a
function (sub)program which evaluates f(x) for all real x, and a step length h. The results
DER(j) and EREST(j) are based on 21 function values:

f(xo), flxox(2i-1)h), i =12,.,10.
Internally the routine calculates the odd order derivatives and the even order derivatives
separately. There is a user option for restricting the calculation to only odd (or even) order

derivatives. For each derivative the routine employs an extension of the Neville Algorithm (see
Lyness and Moler [2]) to obtain a selection of approximations.

For example, for odd derivatives, based on 20 function values, the routine calculates a set of
numbers:

T,

kps? p =s5s5+1,..6,k=0,1,.9-p

each of which is an approximation to f**" (x,)/(2s+1)!. A specific approximation T, ,, is of
polynomial degree 2p + 2 and is based on polynomial interpolation using function values
fxox(2i=1)h), i = kk+1,...k+p. In the absence of round-off error, the better approximations
would be associated with the larger values of p and of k. However, round-off error in function
values has an increasingly contaminating effect for successively larger values of p. This routine

proceeds to make a judicious choice between all the approximations in the following way.
For a specified value of s, let:

R,=U,-L, p = s,s+1,..,6
where U, = maxk(T,‘w), k=0,1,..,.9-p
L, = mink(T,,,P’,), k=01,.9-p

and let p be such that R; = min (R,) for p = s,5+1,...,6.
P

[NP1692/14] Page 1
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The routine returns:
1 5F
DER(2s+1) = STﬁx Z,o T,‘i’,—Ui—LP-}x(ZsH )!
and
EREST(2s+1) = R;X(2s+1)!xK,+1
where K is a safety factor which has been assigned the values:

Kj=l j<9
‘=15 j=1011
K =2 1212

J
on the basis of performance statistics.

The even order derivatives are calculated in a precisely analogous manner.

References

[1] LYNESS, J.N. and MOLER, C.B.
Van der Monde systems and numerical differentiation.
Num. Math,, 8, pp. 458-464. 1966.

[2] LYNESS, J.N. and MOLER, C.B.
Generalised Romberg methods for integrals of derivatives.
Num. Math., 14, pp. 1-14. 1969.

Parameters
XVAL - real. Input
On entry: the point at which the derivatives are required, x,.

NDER - INTEGER. Input

Onentry: NDER must be set so that its absolute value is the highest order derivative
required. If NDER > 0, all derivatives up to order min(NDER,14) are calculated. If
NDER < 0 and NDER is even, only even order derivatives up to order min(—NDER,14)
are calculated. If NDER < 0 and NDER is odd, only odd order derivatives up to order
min(—NDER,13) are calculated.

HBASE - real. Input
On entry: the initial step length which may be positive or negative.

(If set to zero the routine does not proceed with any calculation, but sets the error flag
IFAIL and returns to the (sub)program from which DO4AAF is called.) For advice on the
choice of HBASE see Section 8.

DER(14) - real array. Output

On exit: an approximation to the jth derivative of f(x) at x = XVAL, so long as the jth
derivative is one of those requested by the user when specifying NDER. For other values of
J» DER(j) is unused.

EREST(14) — real array. Output

On exit: an estimate of the absolute error in the corresponding result DER (j) so long as the
jth derivative is one of those requested by the user when specifying NDER. The sign of
EREST(j) is positive unless the result DER(j) is questionable. It is set negative when
IDER(j)| < |ERESTY(j)| or when for some other reason there is doubt about the validity of
the result DER(j) (see Section 6). For other values of j, EREST(j) is unused.

[NP1692/14]
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6:  FUN - real FUNCTION, supplied by the user. ‘ External Procedure
FUN must evaluate the function f(x) at a specified point.
Its specification is:

real FUNCTION FUN(X)
real X

1. X —real. Input
On entry: the value of the argument x.

For users with equally spaced tabular data, the following information may be
useful:
(i) in any call of DO4AAF the only values of X that will be required are
X = XVAL and X = XVAL * (2j-1)HBASE, for j = 1,2,...,10; and

(ii) FUN(XVAL) is always called, but it is disregarded when only odd order
derivatives are required. ‘

FUN must be declared as EXTERNAL in the (sub)program from which DO4AAF is called.
Parameters denoted as Input must not be changed by this procedure.

7:  IFAIL - INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings
Errors detected by the routine:

IFAIL = 1
On entry, NDER = 0,
or HBASE = 0.

If IFAIL has a value zero on exit then DO4AAF has terminated successfully, but before any use
is made of a derivative DER (j) the value of EREST(j) must be checked.

7. Accuracy

The accuracy of the results is problem dependent. An estimate of the accuracy of each result
DER(j) is returned in EREST(j) (see Sections 3 and 5 8).

A basic feature of any floating-point routine for numerical differentiation based on real function
values on the real axis is that successively higher order derivative approximations are
successively less accurate. It is expected that in most cases DER (14) will be unusable. As an aid
to this process, the sign of EREST(j) is set negative when the estimated absolute error is greater
than the approximate derivative itself, i.e. when the approximate derivative may be so inaccurate
that it may even have the wrong sign. It is also set negative in some other cases when information
available to the routine indicates that the corresponding value of DER(j) is questionable.

The actual values in EREST depend on the accuracy of the function values, the properties of the
machine arithmetic, the analytic properties of the function being differentiated and the
user-provided step length HBASE (see Section 8). The only hard and fast rule is that for a given
FUN(X) and HBASE, the values of EREST(j) increase with increasing j. The limit of 14 is
dictated by experience. Only very rarely can one obtain meaningful approximations for higher
order derivatives on conventional machines.

[NP1692/14) Page 3
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8.

9.1.

Page 4

Further Comments

The time taken by the routine depends on the time spent for function evaluations. Otherwise the
time is roughly equivalent to that required to evaluate the function 21 times and calculate a finite
difference table having about 200 entries in total.

The results depend very critically on the choice of the user-provided step length HBASE. The
overall accuracy is diminished as HBASE becomes small (because of the effect of round-off
error) and as HBASE becomes large (because the discretisation error also becomes large). If the
routine is used four or five times with different values of HBASE one can find a reasonably good
value. A process in which the value of HBASE is successively halved (or doubled) is usually
quite effective. Experience has shown that in cases in which the Taylor series for FUN(X) about
XVAL has a finite radius of convergence R, the choices of HBASE > R/21 are not likely to lead
to good results. In this case some function values lie outside the circle of convergence.

Example
This example evaluates the odd-order derivatives of the function:
fx) = fe™-

up to order 7 at the point x = }. Several different values of HBASE are used, to illustrate that:
(i) extreme choices of HBASE, either too large or too small, yield poor results;
(ii) the quality of these results is adequately indicated by the values of EREST.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO4AAF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters .
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Local Scalars ..
real HBASE, XVAL
INTEGER I, IFAIL, J, K, L, NDER
*. .. Local Arrays ..
real DER(14), EREST(14)
* .. External Functions
real FUN
EXTERNAL FUN
* .. External Subroutines
EXTERNAL DO4AAF
* .. Intrinsic Functions
INTRINSIC ABS
* .. Executable Statements

WRITE (NOUT,*) ’'D0O4AAF Example Program Results’

WRITE (NOUT, *)

WRITE (NOUT, *)

+/Four separate runs to calculate the first four odd order derivati
+ves of’

WRITE (NOUT,=*) ' FUN(X) = 0.5*exp(2.0*X-1.0) at X = 0.5.'

WRITE (NOUT,*) ’The exact results are 1, 4, 16 and 64’

WRITE (NOUT, *)

WRITE (NOUT,*) ’Input parameters common to all four runs’

WRITE (NOUT,*) ’ XVAL = 0.5 NDER = -7 IFAIL = 0’
WRITE (NOUT, *)

HBASE = 0.5e0

NDER = -7

L = ABS(NDER)

IF (NDER.GE.QO) THEN
J=1

ELSE
J =2

END IF

[NP1692114)
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XVAL = 0.5e0
DO 40 K =1, 4
IFAIL = 0

CALL DO4AAF (XVAL,NDER, HBASE,DER, EREST, FUN, IFAIL)

WRITE (NOUT, *)
WRITE (NOUT, 99999) ’'with step length’, HBASE,
+ ! the results are’
WRITE (NOUT,*) ‘Order Derivative Error estimate’
pO201I =1, L, J
WRITE (NOUT, 99998) I, DER(I), EREST(I)
20 CONTINUE
HBASE = HBASE*(0.le0
40 CONTINUE
STOP

99999 FORMAT (1X,A,F9.4,A)
99998 FORMAT (1X,I2,2e21.4)
END

real FUNCTION FUN(X)

* .. Scalar Arguments ..
real X

* .. Intrinsic Functions ..
INTRINSIC EXP

* .. Executable Statements ..
FUN = 0.5€0*EXP(2.0e0+X-1.0e0)
RETURN
END

9.2. Program Data
None.
9.3. Program Results
DO4AAF Example Program Results
Four separate runs to calculate the first four odd order derivatives of
FUN(X) = 0.5*exp(2.0*X-1.0) at X = 0.5.
The exact results are 1, 4, 16 and 64
Input parameters common to all four runs

XVAL = 0.5 NDER = -7 IFAIL = 0

with step length 0.5000 the results are

Order Derivative Error estimate
1 0.1392E+4+04 -0.1073E+06
3 -0.3139E+04 -0.1438E+06
5 0.8762E+04 -0.2479E+06
7 -0.2475E+05 -0.4484E+06

with step length 0.0500 the results are

Order Derivative Error estimate
1 0.1000E+01 0.1530E-10
3 0.4000E+01 0.2113E-08
5 0.1600E+02 0.3815E-06
7 0.6400E+02 0.7385E-04

with step length 0.0050 the results are

Order Derivative Error estimate
1 0.1000E+4+01 0.1221E-13
3 0.4000E+01 0.4208E-09
5 0.1600E+02 0.1450E-04
7 0.6404E+02 0.2973E+4+00
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with step length 0.0005

Order

N oW

Derivative
0.1000E+01
0.4000E+01
0.1599E+02
0.3825E+05

the results are
Error estimate
0.1422E-12
0.3087E-06
0.6331E+00
-0.1964E+07

D04 — Numerical Differentiation

Page 6 (last)
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Note. Please refer to the Users’ Note for your implementation to check that a routine is available.

Routine
Name

DOSAAF
DO5SABF
DOSBAF
DOSBDF
DOSBEF
DOSBWF
DOSBYF

Mark of
Introduction

5

6

14
16
16
16
16

Purpose

Linear non-singular Fredholm integral equation, 2nd kind, split kernel
Linear non-singular Fredholm integral equation, 2nd kind, smooth kernel
Nonlinear Volterra convolution equation, 2nd kind

Nonlinear convolution Volterra-Abel equation, 2nd kind, weakly singular
Nonlinear convolution Volterra-Abel equation, 1st kind, weakly singular
Generate weights for use in solving Volterra equations

Generate weights for use in solving weakly singular Abel type equations
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1 Scope of the Chapter

This chapter is concerned with the numerical solution of integral equations. Provision will be made for
most of the standard types of equation (see below). The following are, however, specifically excluded:

(a) Equations arising in the solution of partial differential equations by integral equation methods. In
cases where the prime purpose of an algorithm is the solution of a partial differential equation 1t
will normally be included in Chapter D03.

(b) Calculation of inverse integral transforms. This problem falls within the ambit of Chapter C06.

2 Background to the Problems
2.1 Introduction

Any functional equation in which the unknown function appears under the sign of integration is called
an integral equation. Integral equations arise in a great many branches of science; for example, in
potential theory, acoustics, elasticity, fluid mechanics, radiative transfer, theory of population, etc. In
many instances the integral equation originates from the conversion of a boundary-value problem or an
initial-value problem associated with a partial or an ordinary differential equation, but many problems
lead directly to integral equations and cannot be formulated in terms of differential equations.

Integral equations are of many types; here we attempt to indicate some of the main distinguishing features
with particular regard to the use and construction of algorithms.

2.2 Classification of Integral Equations

In the classical theory of integral equations one distinguishes between Volterra equations and Fredholm
equations. In a Fredholm equation the region of integration is fixed, whereas in a Volterra equation the
region is variable. Thus, the equation

b
cy(t) = f(t) + /\/ K(t,s,y(s)) ds, a<t<b (1)

is an example of Fredholm equation, and the equation

cy(t) = f(t) + /\/ K(t,s,y(s)) ds, a<t (2)

a
is an example of a Volterra equation.

Here the forcing function f(t) and the kernel function K(t,s,y(s)) are prescribed, while y(t) is the
unknown function to be determined. (More generally the integration and the domain of definition of the
functions may extend to more than one dimension.) The parameter A is often omitted; it is, however, of
importance in certain theoretical investigations (e.g. stability) and in the eigenvalue problem discussed
below.

If in (1), or (2), ¢ = 0, the integral equation is said to be of the first kind. If c =1, the equation is said
to be of the second kind.

Equations (1) and (2) are linear if the kernel K(t,s,y(s)) = k(t,s)y(s), otherwise they are nonlnear.

Note. in a linear integral equation, k(t, s) is usually referred to as the kernel. We adopt this convention
throughout.

These two types of equations are broadly analogous to problems of initial- and boundary-value type for an
ordinary differential equation (ODE); thus the Volterra equation, characterised by a variable upper limit
of integration, is amenable to solution by methods of marching type whilst most methods for treating
Fredholm equations lead ultimately to the solution of an approximating system of simultaneous algebraic
equations. For comprehensive discussion of numerical methods see Atkinson [1], Baker [2], Brunner and
van der Houwen [3] and Delves and Walsh [5]. In what follows, the term ‘integral equation’ is used in its
general sense, and the type is distinguished when appropriate.
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2.3 Structure of Kernel

When considering numerical methods for integral equations, particular attention should be paid to the
character of the kernel, which is usually the main factor governing the choice of an appropriate quadrature
formula or system of approximating functions. Various commonly occurring types of singularity call for
individual treatment.

Likewise provision can be made for cases of symmetry, periodicity or other special structure, where the
solution may have special properties and/or economies may be effected in the solution process. We note
in particular the following cases to which we shall often have occasion to refer in the description of
individual algorithms

(a) A linear integral equation with a kernel k(t,s) = k(s,t) is said to be symmetric. This property
plays a key role in the theory of Fredholm integral equations.

(b) Ifk(t,s) =k(a+b—t,a+b—s) in a linear integral equation, the kernel is called centro-symmetric.
(c) If in Equations (1) or (2) the kernel has the form K(t,s, y(s)) = k(t — s)g(s,y(s)), the equation is
called a convolution integral equation; in the linear case g(s, y(s)) = y(s).
(d) If the kernel in (1) has the form
K(t,s,y(s)) = Ky(t,5,y(s)), a<s<t,
K(t,5.y(s)) = Ky(ts,4(s), t<s<b,

where the functions K; and K, are well-behaved, whilst K or its s-derivative is possibly
discontinuous, may be described as discontinuous or of ‘split’ type; in the linear case K(t,s,y(s)) =
k(t,s)y(s) and consequently K, = k,y and K, = k,y. Examples are the commonly occurring
kernels of the type k(|t — s|) and the Green’s functions (influence functions) which arise in the
conversion of ODE boundary-value problems to integral equations. It is also of interest to note that
the Volterra equation (2) may be conceived as a Fredholm equation with kernel of split type, with
Ky(t,s,y(s)) = 0; consequently methods designed for the solution of Fredholm equations with split
kernels are also applicable to Volterra equations.

2.4 Singular and Weakly Singular Equations

An integral equation may be called singular if either

(a) its kernel contains a singularity, or
(b) the range of integration is infinite,

and it is said to be weakly-singular if the kernel becomes infinite at s = ¢.

Sometimes a solution can be effected by a simple adaptation of a method applicable to a non-singular
equation: for example, an infinite range may be truncated at a suitably chosen point. In other cases,
however, theoretical considerations will dictate the need for special methods and algorithms. Examples
are:

(i) Integral equations with singular kernels of Cauchy type;
(ii) Equations of Wiener-Hopf type;

(ii1) Various dual integral equations arising in the solution of boundary-value problems of mathematical
physics;

(iv) The well-known Abel integral equation, an equation of Volterra type, whose kernel contains an
inverse square-root singularity at s = ¢.

Problems of inversion of integral transforms also fall under this heading but, as already remarked, they
lie outside the scope of this chapter.

2.5 Fredholm Integral Equations
2.5.1 Eigenvalue problem

Closely connected with the linear Fredholm integral equation of the second kind is the eigenvalue problem
represented by the homogeneous equation

u(t) = A / "kt o)u(s) ds =0, a<t<b, | 3)
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If A is chosen arbitrarily this equation in general possesses only the trivial solution y(t) = 0. However, for
a certain critical set of values of A, the characteristic values or eigenvalues (the latter term is sometimes
reserved for the reciprocals . = 1/)), there exist non-trivial solutions y(t), termed characteristic functions
or eigenfunctions, which are of fundamental importance in many investigations. The analogy with the
eigenproblem of linear algebra is readily apparent, and indeed most methods of solution of equation (3)
entail reduction to an approximately equivalent algebraic problem

(K — puI)y = 0. (4)

2.5.2 Equations of the first kind
The Fredholm integral equation of the first kind

b
/ k(t, s)y(s) ds = f(1), a<t<b (5)

belong to the class of ‘ill-posed’ problems; even supposing that a solution corresponding to the prescribed
f(t) exists, a slight perturbation of f(t) may give rise to an arbitrarily large variation in the solution y(1).
Hence the equation may be closely satisfied by a function bearing little resemblance to the ‘true’ solution.
The difficulty associated with this instability is aggravated by the fact that in practice the specification
of f(t) is usually inexact.

Nevertheless a great many physical problems (e.g. in radiography, spectroscopy, stereology, chemical
analysis) are appropriately formulated in terms of integral equations of the first kind, and useful and
meaningful ‘solutions’ can be obtained with the aid of suitable stabilising procedures. See Chapters 12
and 13 of Delves and Walsh [5] for further discussion and references.
2.5.3 Equations of the second kind
Consider the nonlinear Fredholm equation of the second kind
b
W)= 50+ [ Koy ds, ast<h (©)

a

The numerical solution of equation (6) is usually accomplished either by simple iteration or by a more
sophisticated iterative scheme based on Newton’s method; in the latter case it is necessary to solve a
sequence of linear integral equations. Convergence may be demonstrated subject to suitable conditions
of Lipschitz continuity of the functions K with respect to the argument y.

Examples of Fredholm type (for which the provision of algorithms is contemplated) are:

(a) the Uryson equation
1
u(t) — / F(t,s,u(s))ds=0, 0<t<1, (M
0

(b) the Hammerstein equation
1
u(t) / k(t, 8)g(s, u(s) ds =0, 0<t<1, (8)
0
where F and g are arbitrary functions.

2.6 Volterra Integral Equations
2.6.1 Equations of the first kind

Consider the Volterra integral equation of the first kind

/ k(t,s)y(s) ds = f(t), a<t. 9)

Clearly it is necessary that f(a) = 0; otherwise no solution to (9) can exist.
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The following types of Volterra integral equations of the first kind occur in real life problems:

equations with unbounded kernel at s = ¢,

equations with sufficiently smooth kernel.

These types belong also to the class of ‘ill-posed’ problems. However, the instability is appreciably less
severe in the equations with unbounded kernel. In general, a non-singular Volterra equation of the first
kind presents less computational difficulty than the Fredholm equation (5) with a smooth kernel.

A Volterra equation of the first kind may, under suitable conditions, be converted by differentiation to
one of the second kind or by integration by parts to an equation of the second kind for the integral of
the wanted function.

2.6.2 Equations of the second kind

A very general Volterra equation of the second kind is given by

y(t) = £(t) + / K(t,s,y(s)) ds, a<t. (10)

The resemblance of Volterra equations to ODEs suggests that the underlying methods for ODE problems
can be applied to Volterra equations. Indeed this turns out to be the case. The main advantages
of implementing these methods are their well-developed theoretical background, i.e., convergence and
stability, see Brunner and van der Houwen [3], Wolkenfelt [6].

Many Volterra integral equations arising in real life problems have a convolution kernel (cf. Section
2.3(c)), see [3] for references. However, a subclass of these equations which have kernels of the form

M
k(t—s)=Y_ X(t—sy, (11)
j=0

where {);} are real, can be converted into a system of linear or nonlinear ODEs, see [3].

For more information on the theoretical and the numerical treatment of integral equations we refer the
user to Atkinson [1], Baker [2], Brunner and van der Houwen [3], Cochran [4] and Delves and Walsh [5].

3 Recommendations on Choice and Use of Available Routines

Note. Refer to the Users’ Note for your implementation to check that a routine is available.

The choice of routine will depend first of all upon the type of integral equation to be solved.

3.1 Fredholm Equations of Second Kind

(a) Linear equations

DO5AAF  is applicable to an equation with a discontinuous or ‘split’ kernel as defined in 2.3.(d).
Here, however, both the functions k, and k, are required to be defined (and well-
behaved) throughout the square a < s, t < b.

DO5ABF is applicable to an equation with a smooth kernel. Note that DOSAAF may also be
applied to this case, by setting k; = k, = k, but DO5ABF is more efficient.
3.2 Volterra Equations of Second Kind

(a) Linear equations

DOS5AAF may be used to solve a Volterra equation by defining k, (or k,) to be identically zero.
(See also (b).)
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(b) Nonlinear equations

DO5BAF

D05BDF

is applicable to a nonlinear convolution Volterra integral equation of the second kind.
The kernel function has the form

K(t,s,y(s)) = k(t — s)g(s,y(s))-

The underlying methods used in the routine are the reducible linear multi-step methods.
The user has a choice of variety of these methods. This routine can also be used for
linear g.

is applicable to a nonlinear convolution equation having a weakly-singular kernel (Abel).
The kernel function has the form

k(t—s)
K(t,s,y(s)) =
(ts.ls) = =2
The underlying methods used in the routine are the fractional linear multistep methods
based on BDF methods. This routine can also be used for linear g.

9(s,y(s)).

3.3 Volterra Equations of First Kind

(a) Linear equations

See (b).

(b) Nonlinear qquations

DO05BEF

is applicable to a nonlinear equation having a weakly-singular kernel (Abel). The kernel
function has the form
k(t—s)

K(t,s,y(s)) = i 9(s,y(s)).

The underlying methods used in the routine are the fractional linear multistep methods
based on BDF methods. This routine can also be used for linear g.

3.4 Utility Routines

DO5BWF generates the weights associated with Adams and BDF linear multistep methods. These
weights can be used for the solution of non-singular Volterra integral and integro-differential
equations of general type.

DO5BYF  generates the weights associated with BDF linear multistep methods. These weights can be
used for the solution of weakly-singular Volterra (Abel) integral equations of general type.

3.5 User-supplied Routines

All the routines in this chapter require the user to supply functions or real procedures defining the kernels
and other given functions in the equations. It is important to test these independently before using them
in conjunction with NAG Library routines.

4 Index
Fredholm equation of second kind,
linear, non-singular discontinuous or ‘split’ kernel: DOSAAF
linear, non-singular smooth kernel: DO5SABF
Volterra equation of second kind,
linear, non-singular kernel: DOSAAF
nonlinear, non-singular, convolution equation: DOSBAF
nonlinear, weakly-singular, convolution equation (Abel): DOSBDF
Volterra equation of first kind,
nonlinear, weakly-singular, convolution equation (Abel): DOSBEF
Weight generating routines,
weights for general solution of Volterra equations: DOSBWF
weights for general solution of Volterra equations with
weakly-singular kernel: DOSBYF
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DOSAAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose
DO5SAAF solves a linear, non-singular Fredholm equation of the second kind with a split kernel.

2. Specification
SUBROUTINE DOSAAF (LAMBDA, A, B, K1, K2, G, F, C, N, IND, W1, W2,

1 WD, NMAX, MN, IFAIL)
INTEGER N, IND, NMAX, MN, IFAIL

real LAMBDA, A, B, K1, K2, G, F(N), C(N), W1 (NMAX,MN),
1 W2 (MN, 4), WD (MN)

EXTERNAL K1, K2, G

3. Description
DO5AAF solves an integral equation of the form

b
fix) - 4 j k(x,s) f(s) ds = g(x)
fora < x < b, when the kernel & is defined in two parts: k = k, fora < s < xand k = k, for
X < s < b. The method used is that of El-gendi [2] for which, it is important to note, each of the
functions &, and k, must be defined, smooth and non-singular, for all x and s in the interval [a,b].

An approximation to the solution f(x) is found in the form of an n term Chebyshev-series

n
Y/ ¢, T;(x), where ' indicates that the first term is halved in the sum. The coefficients c;, for

i=1

i = 1,2,..,n, of this series are determined directly from approximate values f;, fori = 1,2,...,n, of
the function f(x) at the first n of a set of m + 1 Chebyshev points:
x; = {(a+b+(b-a)cos [(i-1)n/m]), i=12,.,m+l.

The values f; are obtained by solving simultaneous linear algebraic equations formed by applying
a quadrature formula (equivalent to the scheme of Clenshaw and Curtis [1]) to the integral
equation at the above points.

In general m = n — 1. However, if the kernel & is centro-symmetric in the interval [q,b], i.e. if
k(x,s) = k(a+b—x,a+b—s), then the routine is designed to take advantage of this fact in the
formation and solution of the algebraic equations. In this case, symmetry in the function g(x)
implies symmetry in the function f(x). In particular, if g(x) is even about the mid-point of the
range of integration, then so also is f(x), which may be approximated by an even
Chebyshev-series with m = 2n — 1. Similarly, if g(x) is odd about the mid-point then f(x) may
be approximated by an odd series with m = 2n.

4. References

[1] CLENSHAW, C.W. and CURTIS, A.R.
A method for numerical integration on an automatic computer.
Numerische Math., 2, pp. 197-205, 1960.

[2] EL-GENDI, S.E.
Chebyshev solution of differential, integral and integro-differential equations.
Comput. J., 12, pp. 282-287, 1969.
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5. Parameters
1: LAMBDA - real. Input
On entry: the value of the parameter A of the integral equation.

2: A —real Input
On entry: the lower limit of integration, a.

3: B -—real Input
On entry: the upper limit of integration, b.
Constraint: B > A.

4. K1 — real FUNCTION, supplied by the user. External Procedure
K1 must evaluate the kernel k(x,s) = k,(x,s) of the integral equation forg < s < x.
Its specification is:

real FUNCTION K1 (X, S)

real X, S
11 X —real Input
22 S —real Input

On entry: the values of x and s at which k, (x,s) is to be evaluated.

K1 must be declared as EXTERNAL in the (sub)program from which DOSAAF is called.
Parameters denoted as /nput must not be changed by this procedure.

5: K2 - real FUNCTION, supplied by the user. External Procedure
K2 must evaluate the kernel k(x,s) = k,(x,s) of the integral equation for x < s < b.
Its specification is:

real FUNCTION K2(X, S)

real X, S
1: X —real Input
22 S —real Input

On entry: the values of x and s at which k, (x,s) is to be evaluated.

K2 must be declared as EXTERNAL in the (sub)program from which DOSAAF is called.
Parameters denoted as /nput must not be changed by this procedure.

Note that the functions k, and k, must be defined, smooth and non-singular for all x and s
in the interval [a,b].

6: G — real FUNCTION, supplied by the user. External Procedure
G must evaluate the function g(x) fora < x < b.
Its specification is:

real FUNCTION G(X)
real X

11 X —real Input
On entry: the values of x at which g(x) is to be evaluated.

G must be declared as EXTERNAL in the (sub)program from which DOSAAF is called.
Parameters denoted as /npur must not be changed by this procedure.
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7:

8:

9:

10:

11:
12:
13:

14:

15:

16:

F(N) - real array. Output

Onexit: the approximate values f;, for i = 1,2,...,N of f(x) evaluated at the first N of
M + 1 Chebyshev points x;, (see Section 3).

FINDisOor3, M=N- 1;ifINDis 1,M = 2xNand if IND is 2, M = 2xN - 1.

C(N) — real array. Output
On exit: the coefficients c,, fori = 1,2,...,N of the Chebyshev-series approximation to f(x).

If IND is 1 this series contains polynomials of odd order only and if IND is 2 the series
contains even order polynomials only.

N — INTEGER. Input
On entry: the number of terms in the Chebyshev-series required to approximate f(x).

IND - INTEGER. Input
On entry: IND must be set to 0,1,2 or 3.
IND =0

k(x,s) is not centro-symmetric (or no account is to be taken of centro-symmetry).
IND =1
k(x,s) is centro-symmetric and g(x) is odd.

IND =2
k(x,s) is centro-symmetric and g(x) is even.
IND =3

k(x,s) is centro-symmetric but g(x) is neither odd nor even.

W1(NMAX,MN) — real array. Workspace
W2(MN,4) - real array. Workspace
WD(MN) - real array. Workspace
NMAX - INTEGER. Input

On entry: the first dimension of the array W1 as declared in the (sub)program from which
DOS5SAAEF is called.

Constraint: NMAX 2 N.

MN - INTEGER. Input

On entry: the first dimension of the array W2 as declared in the (sub)program from which
DOS5SAAF is called.

Constraint: MN 2 2xN + 2.

IFAIL — INTEGER. Input/ Output

Onentry: TFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

Onexit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:
IFAIL =1

A 2 B.
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9.1.

Page 4

IFAIL = 2

A failure has occurred (in FO4AAF unless N = 1) due to proximity to an eigenvalue. In
general, if LAMBDA is near an eigenvalue of the integral equation, the corresponding
matrix will be nearly singular.

Accuracy

No explicit error estimate is provided by the routine but it is usually possible to obtain a good
indication of the accuracy of the solution either

(i) by examining the size of the later Chebyshev coefficients c;, or
(ii) by comparing the coefficients c; or the function values f; for two or more values of N.

Further Comments
The time taken by the routine increases with N.

This routine may be used to solve an equation with a continuous kernel by calling the same
FUNCTION for K2 as for K1.

This routine may also be used to solve a Volterra equation by defining K2 (or K1) to be
identically zero.

Example

The example program solves the equation
1

flx) - J k(x,s) f(s) ds = (l——l—) sin(7zx)
. 7:2
where

_ Js(1=x) for 0 < s < x,
klx,s) = {x(l—-s) forx<s < 1.

Five terms of the Chebyshev-series are sought, taking advantage of the centro-symmetry of the
k(x,s) and even nature of g(x) about the mid-point of the range [0,1].

The approximate solution at the point x = 0.1 is calculated by calling CO6DBF.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO5SAAF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters
INTEGER N, NMAX, MN
PARAMETER (N=5, NMAX=N, MN=2*N+2)
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalars in Common ..
real R
* .. Local Scalars
real A, ANS, B, LAMBDA, X
INTEGER I, IFAIL, IND, IS
* .. Local Arrays ..
real C(NMAX), F(NMAX), W1 (NMAX,MN), W2(MN,4), WD(MN)
* .. External Functions ..
real CO6DBF, G, K1, K2, XO0lAAF
EXTERNAL CO6DBF, G, K1, K2, XO0lAAF
* .. External Subroutines
EXTERNAL DOSAAF
* .. Common blocks
COMMON R
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99999
99998

+

.. Executable Statements ..

WRITE (NOUT,*) ’‘DOSAAF Example Program Results’
WRITE (NOUT, *)

R = X01AAF(0.0e0)

LAMBDA = 1.0e0

A = 0.0e0

B = 1.0e0

IND = 2

IFAIL = 0

WRITE (NOUT, *)

DOSAAF

"Kernel is centro-symmetric and G is even so the solution is even’

WRITE (NOUT, *)

CALL DOSAAF(LAMBDA,A,B,K1,K2,G,F,C,N, IND,Wl, W2, WD, NMAX, MN, IFAIL)

WRITE (NOUT,*) ’Chebyshev coefficients’

WRITE (NOUT, *)

WRITE (NOUT,99998) (C(I),I=1,N)

WRITE (NOUT, *)

X = 0.1e0

Note that X has to be transformed to range [-1,1]
IS =1

IF (IND.EQ.l) THEN

IS = 3
ELSE

IF (IND.EQ.2) IS = 2
END IF
ANS = CO6DBF(2.0e0/(B-A)*(X-0.5e0*(B+A)),C,N, IS)
WRITE (NOUT, 99999) ’X=', X, ' ANS=’, ANS
STOP

FORMAT (1X,A,F5.2,A,1F10.4)
FORMAT (1X,5e14.4)
END

real FUNCTION K1(X,S)
Scalar Arguments ..

real S, X
Executable Statements ..

Kl = Sx(1.0e0-X)

RETURN

END

real FUNCTION K2(X,S)

.. Scalar Arguments ..

real S, X

.. Executable Statements ..
K2 = X*x(1.0e0-S)

RETURN

END

real FUNCTION G(X)
.. Scalar Arguments

real X
.. Scalars in Common ..
real R
. Intrinsic Functions ..
INTRINSIC SIN
Common blocks ..
COMMON R

.. Executable Statements ..

G = SIN(R*X)*(1.0e0-1.0e0/(R*R))
RETURN

END

9.2. Program Data

None.
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9.3. Program Results
DOSAAF Example Program Results

Kernel is centro-symmetric and G is even so the solution is even
Chebyshev coefficients
0.9440E+00 -0.4994E+00 0.2799E-01 -0.5967E-03 0.6658E-05

X= 0.10 ANS= 0.3090
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DOSABF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

w

Purpose

DO5SABEF solves any linear non-singular Fredholm integral equation of the second kind with a
smooth kernel.

Specification
SUBROUTINE DOSABF (K, G, LAMBDA, A, B, ODOREV, EV, N, CM, F1, WK,
1 NMAX, NT2P1, F, C, IFAIL)
INTEGER N, NMAX, NT2P1, IFAIL
real K, G, LAMBDA, A, B, CM(NMAX, NMAX), F1(NMAX,1),
1 WK(2,NT2P1), F(N), C(N)
LOGICAL ODOREV, EV
EXTERNAL K, G
Description

This routine uses the method of El-gendi [2] to solve an integral equation of the form

b
f(x) - lJ k(x,5)f(s)ds = g(x)

for the function f(x) in the range a < x < b.
An approximation to the solution f(x) is found in the form of an n term Chebyshev-series

n
Y.¢,T;(x), where ’ indicates that the first term is halved in the sum. The coefficients c;, for
=1

i = 1,2,..,n, of this series are determined directly from approximate values f,, fori = 1,2,...,n, of
the function f(x) at the first n of a set of m + 1 Chebyshev points

x; = }a+b+(b—a)xcos [(i—1)xa/m]), i=12,.,m+l.

The values f; are obtained by solving a set of simultaneous linear algebraic equations formed by
applying a quadrature formula (equivalent to the scheme of Clenshaw and Curtis [1]) to the
integral equation at each of the above points.

In general m = n — 1. However, advantage may be taken of any prior knowledge of the
symmetry of f(x). Thus if f(x) is symmetric (i.e. even) about the mid-point of the range (a,b),
it may be approximated by an even Chebyshev-series with m = 2n — 1. Similarly, if f(x) is
anti-symmetric (i.e. odd) about the mid-point of the range of integration, it may be approximated
by an odd Chebyshev-series with m = 2n.

References

(1] CLENSHAW, C.W. and CURTIS, A.R.
A method for numerical integration on an automatic computer.
Numerische. Math., 2, pp. 197-205, 1960.

[2] EL-GENDI, S.E.
Chebyshev solution of differential, integral and integro-differential equations.
Comput. J., 12, pp. 282-287, 1969.
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5. Parameters
1: K - real FUNCTION, supplied by the user. External Procedure

K must compute the value of the kernel k(x,s) of the integral equation over the square
as<x<ba<ss<hbh

Its specification is:

real FUNCTION K(X, S)

real X, S
1: X —real Input
22 S —real Input

On entry: the values of x and s at which k(x,s) is to be calculated.

K must be declared as EXTERNAL in the (sub)program from which DOSABF is called.
Parameters denoted as Input must not be changed by this procedure.

2: G — real FUNCTION, supplied by the user. External Procedure
G must compute the value of the function g(x) of the integral equation in the interval
as<x<b

Its specification is:

real FUNCTION G(X)
real X

1: X —real Input
On entry: the value of x at which g(x) is to be calculated.

G must be declared as EXTERNAL in the (sub)program from which DOSABF is called.
Parameters denoted as /nput must not be changed by this procedure.

3:  LAMBDA - real. Input
On entry: the value of the parameter A of the integral equation.

4 A -—real Input
On entry: the lower limit of integration, a.

5: B —real Input
On entry: the upper limit of integration, b.
Constraint: B > A.

6: ODOREV — LOGICAL. Input

On entry: indicates whether it is known that the solution f(x) is odd or even about the
mid-point of the range of integration. If ODOREYV is .TRUE. then an odd or even solution
is sought depending upon the value of EV.

7.  EV - LOGICAL. Input

Onentry: EV is ignored if ODOREYV is .FALSE. Otherwise, if EV is .TRUE., an even
solution is sought, whilst if EV is .FALSE., an odd solution is sought.

8: N - INTEGER. Input
Onentry: the number of terms in the Chebyshev-series which approximates the solution
f(x).
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10:
11:

12:

13:

14:

15:

16:

CM(NMAXNMAX) — real array. Workspace
F1(NMAX,1) — real array. Workspace
WK (2,NT2P1) — real array. Workspace
NMAX — INTEGER. Input

On entry: the first dimension of arrays CM and F1 as declared in the (sub)program from
which DOSABF is called.

Constraint:. NMAX 2 N.

NT2P1 — INTEGER. Input
On entry: the value 2xN+1.

F(N) — real array. Output

On exit: the approximate values f;, for i = 1,2,....N, of the function f(x) at the first N of
M + 1 Chebyshev points (see Section 3).

If ODOREV is .TRUE., then M = 2xN - 1 if EV is .TRUE. and M = 2xN if EV
is .FALSE.; otherwise M = N — 1.

C(N) — real array. Output
On exit: the coefficients c,, fori = 1,2,...,N, of the Chebyshev-series approximation to f(x).

When ODOREYV is .TRUE.,, this series contains polynomials of even order only or of odd
order only, according to EV being .TRUE. or .FALSE. respectively.

IFAIL — INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

IFAIL =1
A = B.
IFAIL = 2

A failure has occurred (in FO4AAF unless N = 1) due to proximity to an eigenvalue. In
general, if LAMBDA is near an eigenvalue of the integral equation, the corresponding
matrix will be nearly singular.

Accuracy

No explicit error estimate is provided by the routine but it is possible to obtain a good indication
of the accuracy of the solution either

(i) by examining the size of the later Chebyshev coefficients c,, or
(ii) by comparing the coefficients c; or the function values f; for two or more values of N.

Further Comments

The time taken by the routine depends upon the value of N and upon the complexity of the kernel
function k(x,s).
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9. Example
Solve Love’s equation:

9.1.

Page 4

1

f(s)

f(«\f)'*'1 — —ds =1

7)1+ (x=s)?

The example program will solve the slightly more general equation:

b
f(x) - /1'[ k(x,8)f(s) ds = 1

DOS5 — Integral Equations

where k(x,s) = o/ (a*+(x—s)?). The values A = -1/m, a=-1, b=1, =1 are used

below.

It is evident from the symmetry of the given equation that f(x) is an even function. Advantage is
taken of this fact both in the application of DOSABEF, to obtain the f; =~ f(x,) and the c;, and in
subsequent applications of CO6DBF to obtain f(x) at selected points.

The program runs for N = 5 and N = 10.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

*
*
*

DO5SABF Example Program Text

Mark 14 Revised. NAG Copyright 1989.

.. Parameters ..

INTEGER NMAX, NT2P1

PARAMETER (NMAX=10, NT2P1=2*NMAX+1)
INTEGER NOUT

PARAMETER (NOUT=6)

.. Scalars in Common ..

real ALPHA, W

.. Local Scalars ..

real A, Al, B, CHEBR, D, E, LAMBDA, S, X
INTEGER I, IFAIL, N, SS

LOGICAL EV, ODOREV

.. Local Arrays ..

real C(NMAX), CM(NMAX,NMAX), F(NMAX), F1(NMAX,1),
+ WK(2,NT2P1)

.. External Functions ..

real CO6DBF, GE, KE

EXTERNAL CO6DBF, GE, KE

.. External Subroutines

EXTERNAL DOSABF

Common blocks
COMMON /AFRED2/ALPHA, W

Executable Statements

WRITE (NOUT,*) ’'DO5SABF Example Program Results’

WRITE (NOUT, *)

ODOREV = .TRUE.

EV = .TRUE.

LAMBDA = -0.3183e0

A = -1.0e0

B = 1.0e0

ALPHA = 1.0e0

W = ALPHA*ALPHA

IF (ODOREV .AND. EV) THEN
WRITE (NOUT,*) ’Solution is even’

ELSE

IF (ODOREV) WRITE (NOUT,*) ’Solution is odd’

END IF
DO 60 N = 5, NMAX, 5
IFAIL = 1
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20

40

60

99999
99998
99997
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DOSABF

CALL DOS5ABF (KE, GE, LAMBDA, A, B, ODOREV, EV, N, CM, F1, WK, NMAX, NT2P1, F,

IF

C, IFAIL)

(IFAIL.EQ.QO) THEN
WRITE (NOUT, *)
WRITE (NOUT, 99999) ’"Results for N =', N
WRITE (NOUT, *)
WRITE (NOUT,*) ’ I F(I) C(I)’
DO 20 I =1, N
WRITE (NOUT,99998) I, F(I), C(I)
CONTINUE
WRITE (NOUT, *)
WRITE (NOUT,*) ' X F(X)’
IF (ODOREV) THEN
IF (EV) THEN
SS = 2
ELSE
SS = 3
END IF
ELSE
SS =1
END IF
Al = 0.5e0*(A+B)
S = 0.5e0*x(B-A)
X = Al
IF ( .NOT. ODOREV) THEN
X=X-5
ELSE
X = Al
IF
1.0e0/s
0.25e0*S
B + 0.1le0*S
CHEBR = CO6DBF((X-Al)*D,C,N,SS)
WRITE (NOUT,99997) X, CHEBR
X=X+ S
IF (X.LT.E) GO TO 40

N

mno

E
D
S
E

ELSE

END

IF (IFAIL.EQ.1l) THEN
WRITE (NOUT, *)
WRITE (NOUT,*) ‘Failure in DOS5SABF -’/
WRITE (NOUT,*) ‘error in integration limits’
ELSE
WRITE (NOUT, *)
WRITE (NOUT,*) ’Failure in DO5ABF -’
WRITE (NOUT,*) ’LAMBDA near eigenvalue’
END IF
IF

CONTINUE

STOP

FORMAT (1X,A,I3)

FORMAT
FORMAT
END

(1X,13,F15.5,€15.5)
(1X,F8.4,F15.5)

real FUNCTION KE(X,S)

.. Sca

real
Sca

real

lar Arguments
S, X
lars in Common ..
ALPHA, W

.. Common blocks ..

COMMON

/AFRED2/ALPHA, W

.. Executable Statements .
KE = ALPHA/(W+(X-S)*(X-S))

RETURN
END
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real FUNCTION GE(X)
Scalar Arguments

real X
Executable Statements

GE = 1.0e0

RETURN

END

9.2. Program Data

None.

9.3. Program Results
DOSABF Example Program Results

Solution is even

Results for N = 5
I F(I)
1 0.75572 0
2 0.74534 0
3 0.71729 -0
4 0.68319 -0
5 0.66051 0
X F(X)
0.0000 0.65742
0.2500 0.66383
0.5000 0.68319
0.7500 0.71489
1.0000 0.75572
Results for N = 10
I F(I)
1 0.75572 0
2 0.75336 0
3 0.74639 -0
4 0.73525 -0
5 0.72081 0
6 0.70452 0
7 0.68825 -0
8 0.67404 0
9 0.66361 0
10 0.65812 -0
X F(X)
0.0000 0.65742
0.2500 0.66384
0.5000 0.68319
0.7500 0.71489
1.0000 0.75572

C(I)

.14152E+01
.49384E-01
.10476E-02
.23282E-03
.20890E-04

C(I)

.14152E+01
.49384E-01
.10475E-02
.23275E-03
.19986E-04
.98675E-06
.23796E-06
.18581E-08
.24483E-08
.16527E-09

DO5 — Integral Equations

Page 6 (last)
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DOSBAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

DOSBAF computes the solution of a nonlinear convolution Volterra integral equation of the
second kind using a reducible linear multi-step method.

2. Specification
SUBROUTINE DO5BAF (CK, CG, CF, METHOD, IORDER, ALIM, TLIM, YN,

1 ERREST, NMESH, TOL, THRESH, WORK, LWK, IFAIL)
INTEGER IORDER, NMESH, LWK, IFAIL

real CK, CG, CF, ALIM, TLIM, YN(NMESH), ERREST(NMESH),
1 TOL, THRESH, WORK (LWK)

CHARACTER*1  METHOD

EXTERNAL CK, CG, CF

3. Description

DOSBAF computes the numerical solution of the nonlinear convolution Volterra integral equation
of the second kind

(@) = f(t) + J k(t—s)g(s,y(s))ds, a<t<T (1)

It is assumed that the functions involved in (1) are sufficiently smooth. The routine uses a
reducible linear multi-step formula selected by the user to generate a family of quadrature rules.
The reducible formulae available in DOSBAF are the Adams-Moulton formulae of orders 3 to 6,
and the backward differentiation formulae (BDF) of orders 2 to 5. For more information about
the behaviour and the construction of these rules we refer to Lubich [1] and Wolkenfelt [3].

The algorithm is based on computing the solution in a step-by-step fashion on a mesh of
equi-spaced points. The initial stepsize which is given by (T—a)/N, N being the number of points
at which the solution is sought, is halved and another approximation to the solution is computed.
This extrapolation procedure is repeated until successive approximations satisfy a user specified
erTor requirement.

The above methods require some starting values. For the Adams formula of order greater than 3
and the BDF of order greater than 2 we employ an explicit Dormand-Prince-Shampine
Runge-Kutta method [2]. The above scheme avoids the calculation of the kernel, k(z), on the
negative real line.

4. References

[1] LUBICH, Ch.
On the stability of linear multi-step methods for Volterra convolution equations.
IMA J. Numer. Anal., 3, pp. 439465, 1983.
[2] SHAMPINE, LF.
Some practical Runge-Kutta formulas.
Math. Comput. 46(173), pp. 135-150, 1986.

[3] WOLKENFELT, P.H.M.
The construction of reducible quadrature rules for Volterra integral and integro-differential
equations.
IMA J. Numer. Anal., 2, pp. 131-152, 1982.
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5. Parameters

1:  CK - real FUNCTION, supplied by the user.

External Procedure
CK must evaluate the kernel k() of the integral equation (1).

Its specification is:

real FUNCTION CK(T)
real T

1: T —real

Input
On entry: the value of the independent variable, .

CK must be declared as EXTERNAL in the (sub)program from which DOSBAF is called.
Parameters denoted as /nput must not be changed by this procedure.

2:  CG - real FUNCTION, supplied by the user.

External Procedure
CG must evaluate the function g(s,y(s)) in (1).
Its specification is:

real FUNCTION CG(S, Y)
real

S, Y
1 S —real Input
On entry: the value of the independent variable, s.
22 Y —real Input
On entry: the value of the solution y at the point S.

CG must be declared as EXTERNAL in the (sub)program from which DOSBAF is called.
Parameters denoted as /npur must not be changed by this procedure.

CF - real FUNCTION, supplied by the user. External Procedure
CF must evaluate the function f(¢) in (1).
Its specification is:

| real FUNCTION CF(T)
1 real T
|

1: T - real Input
On entry: the value of the independent variable, .

CF must be declared as EXTERNAL in the (sub)program from which DOSBAF is called.
Parameters denoted as /nput must not be changed by this procedure.

4:  METHOD — CHARACTER*1.

Input
On entry: the type of method which the user wishes to employ.
For Adams type formulae, METHOD = ‘A’ or a'.
For backward differentiation formulae, METHOD = 'B' or 'b'.
Constraint: METHOD = 'A', a', 'B' or 'b".
5:  IORDER - INTEGER.

Input
On entry: the order of the method to be used.
Constraints: if METHOD

= A'or a’, 3 £ IORDER
if METHOD =

<6,
‘B'or'b, 2 < IORDER < 5.

Page 2
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10:

11:

12:

13:
14:

ALIM - real. Input
On entry: the lower limit of the integration interval, a.
Constraint: ALIM 2 0.0.

TLIM - real. Input
On entry: the final point of the integration interval, T.
Constraint: TLIM > ALIM.

YN(NMESH) - real array. Output

Onexit: YN(i) contains the approximate value of the true solution y(t) at the specified
point ¢t = ALIM + ixH, fori = 1,2,...,.NMESH, where H = (TLIM-ALIM)/NMESH.

ERREST(NMESH) — real array. Output

Onexit: ERREST(i) contains the estimated value of the relative error in the computed
solution at the point # = ALIM + ixH, fori = 1,2,... NMESH, where
H = (TLIM-ALIM)/NMESH.

NMESH - INTEGER. Input
On entry: the number of equi-distant points at which the solution is sought.

Constraints: if METHOD = ‘A’ or 'a’, NMESH 2 IORDER - 1,
if METHOD = 'B' or 'b', NMESH 2 IORDER.

TOL - real. Input
On entry: the relative accuracy required in the computed values of the solution.
Constraint: Y€ < TOL < 1.0, where ¢ is the machine precision.

THRESH - real. ' Input
On entry: the threshold value for use in the evalution of the estimated relative errors. For
two successive meshes the following condition must hold at each point of the coarser mesh

max (Y, |,|Y, |, THRESH|)
where Y, is the computed solution on the coarser mesh and Y, is the computed solution at
the corresponding point in the finer mesh. If this condition is not satisfied then the stepsize
is halved and the solution is recomputed.
Note: THRESH can be used to effect a relative, absolute or mixed error test. If

THRESH = 0.0 then pure relative error is measured and, if the computed solution is small
and THRESH = 1.0, absolute error is measured.

< TOL,

WORK (LWK) — real array. Workspace
LWK - INTEGER. Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
DO5SBAF is called.
Constraint: LWK 2 10xNMESH + 6.

Note: the above value of LWK is sufficient for DOSBAF to perform only one extrapolation
on the initial mesh as defined by NMESH. In general much more workspace is required and
in the case when a large stepsize is supplied (i.e. NMESH is small), the user must provide
a considerably larger workspace.
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15: IFAIL - INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = O unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL =1

On entry, METHOD # 'A', a', 'B' or 'b’,

or IORDER < 2 or IORDER > 6,

or METHOD = ‘A’ or a' and IORDER = 2,

or METHOD = 'B' or 'b' and IORDER = 6,

or ALIM < 0,

or TLIM £ ALIM,

or TOL < +/e or TOL > 1.0, where ¢ is the machine precision.
IFAIL = 2

On entry, NMESH < IORDER - 2, when METHOD = ‘A' or ',

or NMESH < IORDER - 1, when METHOD = 'B' or 'b'.
IFAIL = 3

On entry, LWK < 10xNMESH + 6.
IFAIL = 4

The solution of the nonlinear equation (2) (see below) could not be computed by COSAVF

and CO5AZF.
IFAIL = 5

The size of the workspace LWK is too small for the required accuracy. The computation has
failed in its initial phase (see below).

IFAIL = 6

The size of the workspace LWK is too small for the required accuracy on the interval
[ALIM,TLIM] (see below).

7. Accuracy

The accuracy depends on TOL, the theoretical behaviour of the solution of the integral equation,
the interval of integration and on the method being used. It can be controlled by varying TOL and
THRESH; the user is recommended to choose a smaller value for TOL, the larger the value of
IORDER.

Users are warned not to supply a very small TOL, because the required accuracy may never be
achieved. This will usually force an error exit with IFAIL = 5 or IFAIL = 6.

In general, the higher the order of the method, the faster the required accuracy is achieved with
less workspace. For non-stiff problems (see below) the users are recommended to use the Adams
method (METHOD = 'A') of order greater than 4 (IORDER > 4).

8. Further Comments
When solving (1), the solution of a nonlinear equation of the form
Y, - og(t,Y,) - ¥, =0, (2)

is required, where ¥, and « are constants. DOSBAF calls CO5AVF to find an interval for the zero
of this equation followed by CO5AZF to find its zero.
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There is an initial phase of the algorithm where the solution is computed only for the first few
points of the mesh. The exact number of these points depends on IORDER and METHOD. The
stepsize is halved until the accuracy requirements are satisfied on these points and only then the
solution on the whole mesh is computed. During this initial phase, if LWK is too small, DOSBAF
will exit with IFAIL = §.

In the case IFAIL = 4 or IFAIL = 5, the user may be dealing with a ‘stiff’ equation; an
equation where the Lipschitz constant L of the function g(#,y) in (1) with respect to its second
argument is large, viz,

lg(t.u)—g(tv)| < Llu-v]|. (3)
In this case, if a BDF method (METHOD = 'B') has been used, the user is recommended to
choose a smaller stepsize by increasing the value of NMESH, or provide a larger workspace. But,

if an Adams method (METHOD = 'A') has been selected, the user is recommended to switch to
a BDF method instead.

In the case IFAIL = 6, the specified accuracy has not been attained but ERREST and YN
contain the most recent approximation to the computed solution and the corresponding error
estimate. In this case, the error message informs the user of the number of extrapolations
performed and the size of LWK required for the algorithm to proceed further.

On a successful exit, or with IFAIL = 6, the user may wish to examine the contents of the
workspace WORK. Specifically, for i = 1,2,..,N, where N = int(int((LWK-6)/5)/2) + 1,
WORK (i+N) and WORK (i) contain the computed approximation to the solution and its error

estimate respectively at the point ¢+ = ALIM + Qiﬂx( TLIM-ALIM).

9. Example
Consider the following integral equation

y() =e” + J eI y(s) + e ds, 0 <t<20, (4)
0

with the solution y(#) = In(¢+e). In this example, the Adams method of order 6 is used to solve
this equation with TOL = 1.E4.

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DOSBAF Example Program Text
* Mark 14 Release. NAG Copyright 1989.
* .. Parameters
INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER LWK, NMESH
PARAMETER (LWK=1000, NMESH=6)
* .. Local Scalars ..
real ALIM, H, THRESH, TLIM, TOL
INTEGER I, IFAIL, IORDER
CHARACTER METHOD
* .. Local Arrays
real ERRST(NMESH), WORK(LWK), YN(NMESH)
* .. External Functions
real CF, CG, CK, SOL, X02AJF
EXTERNAL CF, CG, CK, SOL, X02AJF
* .. External Subroutines
EXTERNAL DO5SBAF
* .. Intrinsic Functions
INTRINSIC ABS
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99999
99998
99997

DOS — Integral Equations

.. Executable Statements ..

WRITE (NOUT,*) ‘DO5SBAF Example Program Results’
METHOD = ’'A’

IORDER = 6

ALIM = 0.e0

TLIM = 20.e0

H = (TLIM-ALIM)/NMESH

TOL = l.e-4

THRESH = X02AJF ()

WRITE (NOUT, *)
WRITE (NOUT,99999) ’“Size of workspace =’, LWK
WRITE (NOUT,99998) ’'Tolerance =’, TOL

WRITE (NOUT, *)
IFAIL = 0

CALL DOS5BAF(CK,CG,CF,METHOD, IORDER, ALIM, TLIM, YN, ERRST, NMESH, TOL,
+ THRESH, WORK, LWK, IFAIL)

IF (IFAIL.EQ.0) THEN
WRITE (NOUT, *)

+ T Approx. Sol. True Sol. Est. Error Actual Error
+I
WRITE (NOUT,99997) (ALIM+I*H,¥YN(I),SOL(I*H),ERRST(I),ABS((YN(I)
+ -SOL(I*H))/SOL(I*H)),I=1,NMESH)
END IF
STOP
FORMAT (1X,A,Il2)

FORMAT (1X,A,el2.4)
FORMAT (F7.2,2F14.5,2e€l15.5)
END

real FUNCTION SOL(T)
Scalar Arguments ..

real T
Intrinsic Functions ..
INTRINSIC EXP, LOG

Executable Statements
SOL = LOG(T+EXP(1l.e0))
RETURN
END

real FUNCTION CF(T)
Scalar Arguments

real T
Intrinsic Functions ..
INTRINSIC EXP

Executable Statements
CF = EXP(-T)
RETURN
END

real FUNCTION CK(T)
Scalar Arguments

real T
.. Intrinsic Functions
INTRINSIC EXP

Executable Statements
CK = EXP(-T)
RETURN
END
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real FUNCTION CG(S,Y)

Scalar Arguments

real S, Y
Intrinsic Functions
INTRINSIC EXP

. Executable Statements

CG = Y + EXP(-Y)
RETURN
END

9.2. Program Data

None.

9.3. Program Results

DOSBAF Example Program Results

Size of workspace = 1000

Tolerance = 0.1000E-03
Approx. Sol. True Sol.
3.33 1.80033 1.80033
6.67 2.23911 2.23911
10.00 2.54304 2.54304
13.33 2.77581 2.77581
16.67 2.96450 2.96450
20.00 3.12317 3.12317

COO0OOO0OO0

Est. Error
.22632E-05
.38345E-05
.51505E-05
.63970E-05
.76404E-05
.89901E-05

DOSBAF

Actual Error

[eNeoNoNeNoNe)

.47827E-07
.75399E-07
.99476E-07
.12264E-06
.12346E-06
.77326E-08

[NP1692/14]
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DOSBDF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose

DOSBDF computes the solution of a weakly singular nonlinear convolution Volterra-Abel
integral equation of the second kind using a fractional Backward Differentiation Formulae
(BDF) method.

Specification
SUBROUTINE DO5BDF (CK, CF, CG, INITWT, IORDER, TLIM, TOLNL, NMESH, YN,
1 WORK, LWK, NCT, IFAIL)
INTEGER IORDER, NMESH, LWK, NCT (NMESH/32+1), IFAIL
real CK, CF, CG, TLIM, TOLNL, YN(NMESH), WORK(LWK)
CHARACTER*1 INITWT
EXTERNAL CK, CF, CG

Description

DOSBDF computes the numerical solution of the weakly singular convolution Volterra-Abel
integral equation of the second kind

y(t) = f() + %t J IC—U\/t:—:islg(s,y(s))ds, 0<t<T. (1)
0

Note the constant 1 in (1). It is assumed that the functions involved in (1) are sufficiently

\r
smooth.

The routine uses a fractional BDF linear multi-step method selected by the user to generate a
family of quadrature rules (see DOSBYF). The BDF methods available in DOSBDF are of orders
4, 5 and 6 (= p say). For a description of theoretical and practical background related to these
methods we refer to [3] and [1,2] respectively.

The algorithm is based on computing the solution y(z) in a step-by-step fashion on a mesh of
equispaced points. The size of the mesh is given by T/ (N-1), N being the number of points at
which the solution is sought. These methods require 2p — 1 (including y(0)) starting values
which are evaluated internally. The computation of the lag term arising from the discretization of
(1) is performed by fast Fourier transform (FFT) techniques when N > 32 + 2p - 1, and
directly otherwise. The routine does not provide an error estimate and users are advised to check
the behaviour of the solution with a different value of N. An option is provided which avoids the
re-evaluation of the fractional weights when DOSBDF is to be called several times (with the
same value of N) within the same program unit with different functions.

References

[1] BAKER, C.T.H. and DERAKHSHAN, M.S.
FFT Techniques in the Numerical Solution of Convolution Equations.
J. Comp. Appl. Math. 20, pp. 5-24, 1987.

[2] HAIRER, E., LUBICH, Ch. and SCHLICHTE, M.
Fast Numerical Solution of Weakly Singular Volterra Integral Equations.
J. Comp. Appl. Math. 23, pp. 87-98, 1988.

[3] LUBICH, Ch.
Fractional Linear Multistep Methods for Abel-Volterra Integral Equations of the Second
Kind.
Math. Comp. 45, pp. 463-469, 1985.
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Parameters
CK - real FUNCTION, supplied by the user. External Procedure

CK must evaluate the kernel k(¢) of the integral equation (1).
Its specification is:

real FUNCTION CK(T)
real T

1: T -real Input
On entry: the value of the independent variable, t.

CK must be declared as EXTERNAL in the (sub)program from which DOSBDF is called.
Parameters denoted as /nput must not be changed by this procedure.

CF — real FUNCTION, supplied by the user. External Procedure

CF must evaluate the function f(¢) in (1).
Its specification is:

real FUNCTION CF(T)
real T

I: T-real Input
On entry: the value of the independent variable, ¢.

CF must be declared as EXTERNAL in the (sub)program from which DOSBDF is called.
Parameters denoted as Input must not be changed by this procedure.

CG — real FUNCTION, supplied by the user. External Procedure

CG must evaluate the function g(s,y(s)) in (1).
Its specification is:

real FUNCTION CG(S, Y)
real S, Y
I: S -—real Input
On entry: the value of the independent variable, s.
22 Y —real Input
On entry: the value of the solution y at the point s.

CG must be declared as EXTERNAL in the (sub)program from which DO5SBDF is called.
Parameters denoted as /nput must not be changed by this procedure.

INITWT — CHARACTER*1, Input

Onentry: if the fractional weights required by the method need to be calculated by the
routine, then set INITWT = 'T' (Initial call).

If INITWT = 'S' (Subsequent call), then the routine assumes the fractional weights have
been computed on a previous call and are stored in WORK.

Constraint: INITWT = T or'S".

Note: When DO5BDF is re-entered with the value of INITWT = 'S, the values of NMESH,
IORDER and the contents of WORK must not be changed.

[NP2478/16})
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5:

10:
11:

12:

13:

IORDER - INTEGER. Input
On entry: the order of the BDF method to be used, p.
Constraint: 4 < IORDER < 6.
Suggested value: IORDER = 4,

TLIM - real. Input
On entry: the final point of the integration interval, T.
Constraint: TLIM > 10xmachine precision.

TOLNL - real. Input

On entry: the accuracy required for the computation of the starting value and the solution of
the nonlinear equation at each step of the computation (see Section 8).

Constraint:. TOLNL > 10xmachine precision.
Suggested value: TOLNL = +machine precision.

NMESH - INTEGER. Input
On entry: the number of equispaced points, N, at which the solution is sought.
Constraint: NMESH = 2" + 2xIORDER - 1, where m 2 1.

YN(NMESH) — real array. Output

Onexit: YN(i) contains the approximate value of the true solution y(r) at the point
= (i~1)xh, fori = 1,2,..,NMESH, where h = TLIM/(NMESH-1).

WORK (LWK) — real array. Workspace
LWK - INTEGER. Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
DO5BDF is called.

Constraint: LWK 2 (2xIORDER+6)xNMESH + 8XIORDER? — 16xIORDER + 1.

NCT(NMESH/32+1) — INTEGER array. Workspace

IFAIL - INTEGER. ' Input/ Output

Onentry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

Onexit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL = 1
On entry, IORDER < 4 or IORDER > 6,
or TLIM < 10xmachine precision,
or INITWT # T or'S',
or INITWT = 'S' on the first call to DO5SBDF,
or TOLNL < 10xmachine precision,
or NMESH # 2" + 2xIORDER - 1, m 2> 1,
or LWK < (2xIORDER+6)XNMESH + 8xIORDER? — 16xIORDER + 1.
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IFAIL = 2
The routine cannot compute the 2p-1 starting values due to an error solving the system of

nonlinear equations. Relaxing the value of TOLNL and/or increasing the value of NMESH
may overcome this problem (see Section 8 for further details).

IFAIL = 3

The routine cannot compute the solution at a specific step due to an error in the solution of
single nonlinear equation (2). Relaxing the value of TOLNL and/or increasing the value of
NMESH may overcome this problem (see Section 8 for further details).

Accuracy

The accuracy depends on NMESH and TOLNL, the theoretical behaviour of the solution of the
integral equation and the interval of integration. The value of TOLNL controls the accuracy
required for computing the starting values and the solution of (2) at each step of computation.
This value can affect the accuracy of the solution. However, for most problems, the value of
vmachine precision should be sufficient.

In general, for the choice of BDF method, the user is recommended to use the fourth order BDF
formula (i.e. IORDER = 4).

Further Comments

In solving (1), initially, DOSBDF computes the solution of a system of nonlinear equations for
obtaining the 2p — 1 starting values. COSNDF is used for this purpose. When a failure with
IFAIL = 2 occurs (which corresponds to an error exit from CO5SNDF), users are advised to
either relax the value of TOLNL or choose a smaller step size by increasing the value of
NMESH. Once the starting values are computed successfully, the solution of a nonlinear
equation of the form

Y, - og(t,Y,) - ¥ =0, (2)
is required at each step of computation, where ¥, and « are constants. DOSBDF calls COSAXF
to find the root of this equation.

If a failure with IFAIL = 3 occurs (which corresponds to an error exit from CO5AXF), users are
advised to relax the value of the TOLNL or choose a smaller step size by increasing the value of
NMESH.

If a failure with [FAIL = 2 or 3 persists even after adjustments to TOLNL and/or NMESH then
the user should consider whether there is a more fundamental difficulty. For example, the
problem is ill-posed or the functions in (1) are not sufficiently smooth.

Example

We solve the following integral equations

3 1
y(t)y =t + Sar? - J —[y(s)]ds, 0<t<7,
8 o, Vi=s

with the solution y(t) = 4/¢, and
t

exp(s(1=s)*=[y(s)]?)ds, 0<t<5,

1
y(£) = (3-1)vr - J
Ve

with the solution y(r) = (1-r)4/r. In the above examples, the fourth order BDF is used, and
NMESH is set to 2° + 7.

Page 4 [NP2478/16]
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9.1. Program Text
Note: the listing of the example program presented below uses bold italicised terms to denote precision-d dent details. Please read

L d

the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO5BDF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER IORDER, NMESH, LCT, LWK
PARAMETER (IORDER=4,NMESH=2**6+2* IORDER~1, LCT=NMESH/32+1,
+ LWK=(2*IORDER+6) *NMESH+8* IORDER* IORDER~-
+ 16*IORDER+1)
* .. Local Scalars ..
real ERR, ERRMAX, H, HI1, SOLN, T, TLIM, TOLNL
INTEGER I, IFAIL
* .. Local Arrays ..
real WORK(LWK), YN(NMESH)
INTEGER NCT(LCT)
* .. External Functions ..
real CFl1l, CF2, CGl, CG2, CK1l, CK2, X02AJF
EXTERNAL CFl, CF2, CGl, CG2, CK1l, CK2, X02AJF
* .. External Subroutines ..
EXTERNAL DO5BDF
* .. Intrinsic Functions ..
INTRINSIC ABS, real, MOD, SQRT
* .. Executable Statements ..

WRITE (NOUT,*) ’'DO5BDF Example Program Results’
WRITE (NOUT, *)

IFAIL = 0

TLIM = 7.0e0

TOLNL = SQRT(X02AJF())

H = TLIM/(NMESH-1)

CALL DO5BDF(CK1,CF1,CGl,’Initial’, IORDER, TLIM, TOLNL, NMESH, YN, WORK,
+ LWK, NCT, IFAIL)

WRITE (NOUT,*) ’Example 1’

WRITE (NOUT, *)

WRITE (NOUT,99997) H

WRITE (NOUT, *)

WRITE (NOUT,*) ' T Approximate’
WRITE (NOUT,*) ' Solution '
WRITE (NOUT, *)

ERRMAX = 0.0e0
DO 20 I = 1, NMESH
HI1 = real(I-1)*H
ERR = ABS(YN(I)—-SQRT(HI1l))
IF (ERR.GT.ERRMAX) THEN
ERRMAX = ERR
T = HI1
SOLN = ¥YN(I)
END IF
IF (MOD(I,5).EQ.1l) WRITE (NOUT,99998) HI1l, ¥YN(I)
20 CONTINUE
WRITE (NOUT, *)
WRITE (NOUT, 99999) ERRMAX, T, SOLN

TLIM = 5.0e0
H = TLIM/(NMESH-1)

CALL DO5BDF(CK2,CF2,CG2,’Subsequent’, IORDER, TLIM, TOLNL, NMESH, YN,
+ WORK, LWK, NCT, IFAIL)
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WRITE (NOUT,*) ’Example 2’

WRITE (NOUT, *)

WRITE (NOUT,99997) H

WRITE (NOUT, %)

WRITE (NOUT,*) ' T Approximate’
WRITE (NOUT,=*) ' Solution ’
WRITE (NOUT, %)

ERRMAX = 0.0e0
DO 40 I = 1, NMESH
HI1 = real(I-1)*H
ERR = ABS(YN(I)—(1.0e0-HI1)*SQRT(HI1l))
IF (ERR.GT.ERRMAX) THEN
ERRMAX = ERR
T = HI1l
SOLN = ¥YN(I)
END IF
IF (MOD(I,7).EQ.1) WRITE (NOUT,99998) HI1l, YN(I)
40 CONTINUE
WRITE (NOUT, *)
WRITE (NOUT, 99999) ERRMAX, T, SOLN
*

STOP
*
99999 FORMAT ('’ The maximum absolute error, ’',E10.2,’, occurred at T =',
+ F8.4,/’ with solution ’,F8.4,/)
99998 FORMAT (1X,F8.4,F15.4)
99997 FORMAT ('’ The stepsize h = ’,F8.4)
END
*

*
real FUNCTION CK1(T)

* .. Scalar Arguments ..
real T

* .. Local Scalars
real PI

* .. External Functions ..
real X01AAF
EXTERNAL X01AAF

* .. Intrinsic Functions ..
INTRINSIC SQORT

* .. Executable Statements
CK1l = —SQRT(X01lAAF(PI))
RETURN
END

real FUNCTION CF1(T)

* .. Scalar Arguments ..
real T

* .. Local Scalars
real PI

* .. External Functions
real X01AAF
EXTERNAL X01AAF

* .. Intrinsic Functions ..
INTRINSIC SQRT

* .. Executable Statements ..
CFl = SQRT(T) + (3.0e0/8.0e0)*T*T*X01AAF(PI)
RETURN
END

real FUNCTION CG1(S,Y)

* .. Scalar Arguments ..
real S, Y

* .. Executable Statements
CGl = Y*Y*xY
RETURN
END
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real FUNCTION CK2(T)
Scalar Arguments

real T
Local Scalars
real PI
. External Functions
real XU1AAF
EXTERNAL X01lAAF

Intrinsic Functions
SQRT

INTRINSIC

. Executable Statements
CK2 = —-SQRT(X01lAAF(PI))

RETURN
END

real FUNCTION CF2(T)
Scalar Arguments

real

T

Intrinsic Functions
SQRT

INTRINSIC

Executable Statements

CF2 = (3.0e0-T)*SQRT(T)

RETURN
END

real FUNCTION CG2(S,Y)
Scalar Arguments

real

S,

Y

Intrinsic Functions

INTRINSIC

Executable Statements ..
CG2 = EXP(S*(1.0e0-S)*(1.0e0-S)-Y*Y)

RETURN
END

9.2. Program Data

None.

9.3. Program Results

DO5BDF Example Program Results

Example 1

The stepsize h =

NooauUude b WWNNHEEFRP OO

[NP2478/16)

T

.0000
.5000
.0000
.5000
.0000
.5000
.0000
.5000
.0000
.5000
.0000
.5000
.0000
.5000
.0000

0.10

EXP

00

Approximate
Solution

NDNNNMNNNNOMNRPRRPRRERREOO

.0000
.7071
.0000
.2247
.4142
.5811
.7321
.8708
.0000
.1213
.2361
.3452
.4495
.5495
.6458

DOSBDF
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The maximum absolute error, 0.94E-08, occurred at T = 0.9000
with solution 0.9487
Example 2
The stepsize h = 0.0714
T Approximate
Solution
0.0000 0.0000
0.5000 0.3536
1.0000 0.0000
1.5000 -0.6124
2.0000 -1.4142
2.5000 -2.3717
3.0000 -3.4641
3.5000 -4.6771
4.0000 -6.0000
4.5000 -7.4246
5.0000 -8.9443
The maximum absolute error, 0.42E-07, occurred at T = 4.3571
with solution -7.0076
Page 8 (last) [NP2478/16]
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DOSBEF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

DO5SBEF computes the solution of a weakly singular nonlinear convolution Volterra-Abel
integral equation of the first kind using a fractional Backward Differentiation Formulae (BDF)
method.

2. Specification
SUBROUTINE DOS5BEF (CK, CF, CG, INITWT, IORDER, TLIM, TOLNL, NMESH, YN,

1 WORK, LWK, NCT, IFAIL)

INTEGER IORDER, NMESH, LWK, NCT(NMESH/32+1), IFAIL
real CK, CF, CG, TLIM, TOLNL, YN(NMESH), WORK (LWK)
CHARACTER*1  INITWT

EXTERNAL CK, CF, CG

3. Description
DOSBEF computes the numerical solution of the weakly singular convolution Volterra-Abel
integral equation of the first kind

" k(t-s)

1
D+ —= | ——gs
9+ 5 j s &
Note the constant 1 in (1). It is assumed that the functions involved in (1) are sufficiently

r
smooth and if
f(t) = tPw(r) with B > -}, (2)

then the solution y(¢) is unique and has the form y(r) = #"2z(¢), (see [4]). It is evident from
(1) that f(0) = 0. The user is required to provide the value of y(¢) at ¢ = 0. If y(0) is unknown,
Section 8 gives a description of how an approximate value can be obtained.

y(s))ds = 0, 0<t<T 1)

The routine uses a fractional BDF linear multi-step method selected by the user to generate a
family of quadrature rules (see DOSBYF). The BDF methods available in DOSBEF are of orders
4, 5 and 6 (= p say). For a description of the theoretical and practical background related to these
methods we refer to [4] and [1,3] respectively.

The algorithm is based on computing the solution y(¢) in a step-by-step fashion on a mesh of
equispaced points. The size of the mesh is given by T/ (N-1), N being the number of points at
which the solution is sought. These methods require 2p — 2 starting values which are evaluated
internally. The computation of the lag term arising from the discretization of (1) is performed by
fast Fourier transform (FFT) techniques when N > 32 + 2p — 1, and directly otherwise. The
routine does not provide an error estimate and users are advised to check the behaviour of the
solution with a different value of N. An option is provided which avoids the re-evaluation of the
fractional weights when DOSBEEF is to be called several times (with the same value of N) within
the same program with different functions.

4. References

[1] BAKER, C.T.H. and DERAKHSHAN, M.S.
FFT Techniques in the Numerical Solution of Convolution Equations.
J. Comp. Appl. Math. 20, pp. 5-24, 1987.
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[21 GORENFLO, R. and PFEIFFER, A.
On Analysis and Discretization of Nonlinear Abel Integral Equations of First Kind.
ACTA Mathematica Vietnamica, 16, pp. 211-262, 1991.

[3]1 HAIRER, E., LUBICH, Ch. and SCHLICHTE, M.
Fast Numerical Solution of Weakly Singular Volterra Integral Equations.
J. Comp. Appl. Math. 23, pp. 87-98, 1988.

[4] LUBICH, Ch.
Fractional Linear Multistep Methods for Abel-Volterra Integral Equations of the First Kind.
IMA J. Numer. Anal. 7, pp. 97-106, 1987.

S. Parameters

1:  CK - real FUNCTION, supplied by the user. External Procedure
CK must evaluate the kernel k(¢) of the integral equation (1).
Its specification is:

real FUNCTION CK(T)
real T

. T -real Input

On entry: the value of the independent variable, ¢.

CK must be declared as EXTERNAL in the (sub)program from which DO5SBEF is called.
Parameters denoted as /nput must not be changed by this procedure.

2:  CF — real FUNCTION, supplied by the user. External Procedure
CF must evaluate the function f(¢) in (1).
Its specification is:

real FUNCTION CF(T)
real T

1: T - real ‘ Input
On entry: the value of the independent variable, .

CF must be declared as EXTERNAL in the (sub)program from which DO5SBEF is called.
Parameters denoted as Input must not be changed by this procedure.

3:  CG - real FUNCTION, supplied by the user. External Procedure
CG must evaluate the function g(s,y(s)) in (1).
Its specification is:

real FUNCTION CG(S, Y)

real S, Y
1: S —real Input
On entry: the value of the independent variable, s.
22 Y —real Input

On entry: the value of the solution y at the point s.

CG must be declared as EXTERNAL in the (sub)program from which DO5SBEF is called.
Parameters denoted as Input must not be changed by this procedure.

Page 2 [NP2478/16]
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4:

10:
11:

12:

13:

INITWT - CHARACTER*1. Input

On entry: if the fractional weights required by the method need to be calculated by the
routine, then set INITWT = 'T' (Initial call).

If INITWT = 'S' (Subsequent call), then the routine assumes the fractional weights have
been computed by a previous call and are stored in WORK.

Constraint: INITWT = T or 'S".

Note: When DO5SBEF is re-entered with a value of INITWT = 'S', the values of NMESH,
IORDER and the contents of WORK must not be changed.

IORDER - INTEGER. Input
On entry: the order of the BDF method to be used, p.
Constraint: 4 < IORDER < 6.
Suggested value: IORDER = 4.

TLIM - real. Input
On entry: the final point of the integration interval, T.
Constraint: TLIM > 10xmachine precision.

TOLNL - real. Input

On entry: the accuracy required for the computation of the starting value and the solution of
the nonlinear equation at each step of the computation (see Section 8).

Constraint. TOLNL > 10xmachine precision.

Suggested value: TOLNL = ymachine precision.

NMESH - INTEGER. Input
On entry: the number of equispaced points, N, at which the solution is sought.
Constraint: NMESH = 2™ + 2xIORDER - 1, where m 2 1.

YN(NMESH) - real array. Input/ Output
On entry: YN(1) must contain the value of y(¢) at t = 0 (see Section 8).

Onexit: YN(i) contains the approximate value of the true solution y(¢) at the point
t = (i-1)xh, fori = 1,2,...,NMESH, where h = TLIM/(NMESH-1).

WORK (LWK) — real array. Workspace
LWK - INTEGER. Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
DOSBEEF is called.

Constraint: LWK 2> (2xIORDER+6)xNMESH + 8XIORDER? — 16xIORDER + 1.

NCT(NMESH/32+1) — INTEGER array. Workspace

IFAIL — INTEGER. Input/ Output

Onentry. IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

Onexit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).
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IFAIL = 1

On entry, IORDER < 4 or IORDER > 6,

or TLIM < 10xmachine precision,

or INITWT # T or 'S',

or INITWT = 'S’ on the first call to DO5BEF,

or TOLNL < 10xmachine precision,

or NMESH # 2" + 2xIORDER - 1, m 2 1,

or LWK < (2xIORDER+6)XNMESH + 8xIORDER? — 16xIORDER + 1.
IFAIL = 2

The routine cannot compute the 2p — 2 starting values due to an error in solving the system
of nonlinear equations. Relaxing the value of TOLNL and/or increasing the value of
NMESH may overcome this problem (see Section 8 for further details).

IFAIL = 3

The routine cannot compute the solution at a specific step due to an error in the solution of
single nonlinear equation (3). Relaxing the value of TOLNL and/or increasing the value of
NMESH may overcome this problem (see Section 8 for further details).

7. Accuracy

The accuracy depends on NMESH and TOLNL, the theoretical behaviour of the solution of the
integral equation and the interval of integration. The value of TOLNL controls the accuracy
required for computing the starting values and the solution of (3) at each step of computation.
This value can affect the accuracy of the solution. However, for most problems, the value of
machine precision should be sufficient.

In general, for the choice of BDF method, the user is recommended to use the fourth order BDF
formula (i.e. IORDER = 4).

8. Further Comments

Also when solving (1) the initial value y(0) is required. This value may be computed from the
limit relation (see [2])

-2 . f(t)
—=k(0 0,y(0)) = lim—. 3
Wt()g(y()) P (3)
If the value of the above limit is known then by solving the nonlinear equation (3) an
approximation to y(0) can be computed. If the value of the above limit is not known, an
approximation should be provided. Following the analysis presented in [2], the following pth
order approximation can be used:

. n")

im0 = f1) 4
=0 V; hP/Z ( )
However, it must be emphasized that the approximation in (4) may result in an amplification of
the rounding errors and hence users are advised (if possible) to determine lim f(—tt) by analytical

t—0
methods.

Also when solving (1), initially, DOSBEF computes the solution of a system of nonlinear
equation for obtaining the 2p — 2 starting values. COSNDF is used for this purpose. If a failure
with IFAIL = 2 occurs (corresponding to an error exit from COSNDF), users are advised to
either relax the value of TOLNL or choose a smaller step size by increasing the value of
NMESH. Once the starting values are computed successfully, the solution of a nonlinear
equation of the form

Y, — og(t,Y,) - ¥ =0, (5)

is required at each step of computation, where ¥, and o are constants. DOSBEF calls COSAXF
to find the root of this equation.
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When a failure with IFAIL = 3 occurs (which corresponds to an error exit from CO5SAXF),
users are advised to either relax the value of the TOLNL or choose a smaller step size by
increasing the value of NMESH.

If a failure with IFAIL = 2 or 3 persists even after adjustments to TOLNL and/or NMESH then
the user should consider whether there is a more fundamental difficulty. For example, the
problem is ill-posed or the functions in (1) are not sufficiently smooth.

9. Example
We solve the following integral equations.
Example 1:

The density of the probability that a Brownian motion crosses a one-sided moving boundary a(¢)
before time ¢, satisfies the integral equation (see [3])

—%exp(%—{a(t) }Z/t)

Jﬂ exp(—%{a(t)—a(s)}zl (t—s))
+ s

y(s) ds=0, 0str<T.

In the case of a straight line a(¢t) = 1 + ¢, the exact solution is known to be

\2m?

Example 2:
In this example we consider the equation

The solution is given by y(¢) =

_Zog(Vltt+vr)

2|

y(t) = —l-s-exp{-—( 1+1)2/2¢}

X(i)ds:O, 0<t<s.

Vi=s

1 +¢

In the above examples, the fourth order BDF is used, and NMESH is set to 2° + 7.

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

*
*
*

[NP2478/16]

+
+

DO5SBEF Example Program Text

Mark 16 Release
.. Parameters
INTEGER
PARAMETER
INTEGER
PARAMETER

.. Local Scalar
real

INTEGER

.. Local Arrays
real

INTEGER

. NAG Copyright 1992,

NOUT

(NOUT=6)

IORDER, NMESH, LCT, LWK

(IORDER=4, NMESH=2**6+2*IORDER-1, LCT=NMESH/32+1,

LWK=( 2*IORDER+6 ) *NMESH+8* IORDER* IORDER-

16*IORDER+1)
S ..
ERR, ERRMAX, H, HI1, SOLN, T, TLIM, TOLNL
I, IFAIL

WORK (LWK), YN(NMESH)
NCT(LCT)

.. External Functions ..

real
EXTERNAL

CFl, CF2, CGl, CG2, CK1l, CK2, SOLl1l, SOL2Z2, X02AJF
CFl, CF2, CGl, CG2, CK1l, CK2, SOLl1l, SOL2, X02AJF

External Subroutines ..

EXTERNAL

DO5BEF

.. Intrinsic Functions

INTRINSIC

ABS, real, MOD, SQRT

.. Executable Statements

WRITE (NOUT, *)
WRITE (NOUT, *)
IFAIL = 0

'DOSBEF Example Program Results’
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TLIM = 7.0e0
TOLNL = SQRT(X02AJF())
H = TLIM/(NMESH-1)

YN(1l) = 0.0e0

CALL DOS5BEF(CK1,CF1,CGl,’Initial’, IORDER, TLIM, TOLNL, NMESH, YN, WORK,
+ LWK, NCT, IFAIL)

WRITE (NOUT,*) ’'Example 1’

WRITE (NOUT, *)

WRITE (NOUT,99997) H

WRITE (NOUT, *)

WRITE (NOUT,=*) ' T Approximate’
WRITE (NOUT,*) ’ Solution *
WRITE (NOUT, %)

ERRMAX = 0.0e0
DO 20 I = 2, NMESH
HI1 = real(I-1)*H
ERR = ABS(YN(I)—-SOL1l(HI1l))
IF (ERR.GT.ERRMAX) THEN
ERRMAX = ERR
T = HI1
SOLN = ¥YN(I)
END IF
IF (I.GT.5 .AND. MOD(I,5).EQ.1l) WRITE (NOUT, 99998) HI1l, ¥YN(I)
20 CONTINUE
WRITE (NOUT, *)
WRITE (NOUT,99999) ERRMAX, T, SOLN

WRITE (NOUT, *)

TLIM = 5.0e0
H = TLIM/(NMESH-1)
YN(1l) = 1.0e0

CALL DOSBEF(CK2,CF2,CG2, ' Subsequent’, IORDER, TLIM, TOLNL, NMESH, YN,
+ WORK, LWK, NCT, IFAIL)

WRITE (NOUT,*) ’'Example 2’

WRITE (NOUT, *)

WRITE (NOUT,99997) H

WRITE (NOUT, *)

WRITE (NOUT,*) ’ T Approximate’
WRITE (NOUT,x*x) ’ Solution ’
WRITE (NOUT, %)

ERRMAX = 0.0e0
DO 40 I = 1, NMESH
HI1 = real(I-1)*H
ERR = ABS(YN(I)-SOL2(HI1l))
IF (ERR.GT.ERRMAX) THEN
ERRMAX = ERR
T = HI1
SOLN = YN(I)
END IF
IF (I.GT.7 .AND. MOD(I,7).EQ.1) WRITE (NOUT, 99998) HI1l, Y¥YN(I)
40 CONTINUE
WRITE (NOUT, *)
WRITE (NOUT,99999) ERRMAX, T, SOLN
*

STOP
*
99999 FORMAT (’ The maximum absolute error, ’,E10.2,’, occurred at T =',
+ F8.4,/’ with solution ’,F8.4,/)
99998 FORMAT (1X,F8.4,F15.4)
99997 FORMAT ('’ The stepsize h = ’,F8.4)
END
*

Page 6 [NP2478/16)



D05 — Integral Equations

(NP2478/16)

real FUNCTION CK1(T)
Scalar Arguments ..

real T
Intrinsic Functions ..
INTRINSIC EXP

.. Executable Statements
CKl = EXP(-0.5e0*T)
RETURN

END

real FUNCTION CF1(T)
.. Scalar Arguments

real T
.. Local Scalars ..
real A, PI,
.. External Functions ..
real X01AAF
EXTERNAL X01AAF

.. Intrinsic Functions ..

INTRINSIC . EXP, SQRT

.. Executable Statements
Tl = 1.0e0 + T

A = 1.0e0/SQRT(X01AAF(PI)*T)
CFl = —A*EXP(—-0.5e0*T1*T1/T)

RETURN
END

real FUNCTION CG1(S,Y)
.. Scalar Arguments

real S, Y
.. Executable Statements
CGl =Y

RETURN

END

real FUNCTION SOL1(T)
Scalar Arguments ..

real by

.. Local Scalars

real Cc, PI,
.. External Functions ..
real X01AAF
EXTERNAL X01AAF

.. Intrinsic Functions ..

INTRINSIC EXP, SOQRT

Executable Statements

Tl = 1.0e0 + T

C = 1.0€0/SQRT(2.0e0*X01AAF(PI))
SOLl1 = C*(1.0e0/(T**1.5€0))*EXP(~T1*T1/(2.0e0*T))

RETURN
END

real FUNCTION CK2(T)
.. Scalar Arguments ..

real T
Local Scalars ..

real PI

.. External Functions ..
real X01AAF
EXTERNAL X01AAF
.. Intrinsic Functions ..
INTRINSIC SQRT

DOSBEF
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* .. Executable Statements
CK2 = SQRT(X01AAF(PI))
RETURN
END

real FUNCTION CF2(T)

* .. Scalar Arguments
real T
* .. Local Scalars
real ST1
* .. Intrinsic Functions .
INTRINSIC LOG, SQRT
* .. Executable Statements
ST1 = SQRT(1.0e0+T)
CF2 = -2.0e0*LOG(ST1+SQRT(T))/ST1
RETURN
END

real FUNCTION CG2(S,Y)

* .. Scalar Arguments
real S, Y
* .. Executable Statements
CG2 = Y
RETURN
END

real FUNCTION SOL2(T)

* .. Scalar Arguments
real T

* .. Executable Statements
SOL2 = 1.0e0/(1.0e0+T)
RETURN
END

9.2. Program Data
None.

9.3. Program Results
DO5BEF Example Program Results

Example 1
The stepsize h = 0.1000
T Approximate
Solution
0.5000 0.1191
1.0000 0.0528
1.5000 0.0265
2.0000 0.0146
2.5000 0.0086
3.0000 0.0052
3.5000 0.0033
4.0000 0.0022
4.5000 0.0014
5.0000 0.0010
5.5000 0.0007
6.0000 0.0004
6.5000 0.0003
7.0000 0.0002
The maximum absolute error, 0.29E-02, occurred at T = 0.1000

with solution 0.0326
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Example 2

The stepsize h = 0.0714

e bWWNNRE RO

The

T

.5000
.0000
.5000
.0000
.5000
.0000
.5000
.0000
.5000
.0000

maximum absolute error,
with solution

Approximate
Solution

.6667
.5000
.4000
.3333
.2857
.2500
.2222
.2000
.1818
.1667

QOO OOOO0OOOO

0.9333

0.32E-05, occurred at T

DOSBEF
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DOSBWF — NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

DO5BWF computes the quadrature weights associated with the Adams methods of orders three to
six and the Backward Differentiation Formulae (BDF) methods of orders two to five. These
rules, which are referred to as reducible quadrature rules, can then be used in the solution of
Volterra integral and integro-differential equations.

2. Specification
SUBROUTINE DOSBWF (METHOD, IORDER, OMEGA, NOMG, LENSW, SW, LDSW,

1 NWT, IFAIL)
INTEGER IORDER, NOMG, LENSW, LDSW, NWT, IFAIL
real OMEGA (NOMG), SW(LDSW, NWT)

CHARACTER*1 METHOD

3. Description

DO5SBWF computes the weights W, and w; for a family of quadrature rules related to the Adams
methods of orders three to six and the BDF methods of orders two to five, for approximating the
integral:

' 1 n
J‘ #(s) ds = h Piwn,jmh) + h Yo, 6(h), 0<t<T, (1)
0 =0 e d

with t = nh, (n20) for some given constant h.

In (1), h is a uniform mesh, p is related to the order of the method being used and W,;, o; are
the starting and the convolution weights respectively. A description of how these weights can be
used in the solution of a Volterra integral equations of the second kind is given in Section 8. For
a general discussion of these methods, see [2] for more details.

4. References

[1] LAMBERT, J.D.
Computational Methods in Ordinary Differential Equations.
John Wiley, London, 1973.

[2] WOLKENFELT, P.H.M.
The construction of reducible quadrature rules for Volterra integral and integro-differential
equations.
IMA J. Num. Anal., 2, pp. 131-152, 1982.

5. Parameters
I:  METHOD - CHARACTER*1. Input
On entry: the type of method to be used.
For Adams type formulae set METHOD = ‘A'.
For Backward Differentiation Formulae set METHOD = 'B'.
Constraint: METHOD = A’ or 'B.

2:  IORDER - INTEGER. Input
On entry: the order of the method to be used.

Constraints: if METHOD = ‘A', 3 < IORDER < 6,
if METHOD = 'B', 2 < IORDER < 5.
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OMEGA (NOMG) - real array. Output
On exit: contains the first NOMG convolution weights.

NOMG - INTEGER. Input
On entry: the number of convolution weights.
Constraint: NOMG 2 1.

LENSW — INTEGER. Output
On exit: the number of rows in the weights W, ;.

SW(LDSW ,NWT) — real array. Output
On exit: SW (i,j+1) contains the weights W, ., fori = 1,2,...,LENSW;j = 0,1,..,NWT - 1.

i
LDSW - INTEGER. Input

On entry: the first dimension of the array SW as declared in the (sub)program from which
DOSBWEF is called.

Constraints: if METHOD

‘A', LDSW 2 NOMG + IORDER - 2,
2

if METHOD = 'B', LDSW = NOMG + IORDER - 1.
NWT — INTEGER. Input
On entry. the number of columns in the starting weights, p.
Constraints: if METHOD = ‘A’, NWT = IORDER - 1,
if METHOD = 'B', NWT = IORDER.
IFAIL — INTEGER. Input/ Output

On entry: TFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

Onexit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = O or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL = 1
On entry, METHOD # ‘A’ or 'B'.

IFAIL = 2
On entry, IORDER < 2 or IORDER > 6,
or NOMG < 1.
IFAIL = 3
On entry, METHOD = ‘A’ and IORDER = 2,
or METHOD = 'B' and IORDER = 6.
IFAIL = 4
On entry, METHOD = ‘A’ and NWT # IORDER - 1,
or METHOD = 'B'and NWT # IORDER.

[NP2478/16])



DOS — Integral Equations DOSBWF

IFAIL = 5
On entry, METHOD = ‘A' and LDSW < NOMG + IORDER - 2,
or METHOD = 'B' and LDSW < NOMG + IORDER - 1.

7. Accuracy
None.

8. Further Comments

Reducible quadrature rules are most appropriate for solving Volterra integral equations (and
integro-differential equations). In this section, we propose the following algorithm which the
users may find useful in solving a linear Volterra integral equation of the form
y() = f(r) + j K(t,s)y(s)ds, 0<:t<T, 2)
(1}
using DOSBWF. In (2), K(1,5) and f(¢) are given and the solution y(t) is sought on a uniform
mesh of size h such that T = Nh. Discretization of (2) yields

pl n
Ya = f(nh) + h jéwnJK(thh)yj + h %wn_jl((nhjh)yj, (3)

where y, = y(nh). We propose the following algorithm for computing y, from (3) after a call
to DOSBWF:

(a) Equation (3) requires starting values, y;, for j = 1,2,...NWT - 1, with y, = f(0). These
starting values can be computed by solving the linear system

NWT-1
y, = f(nh) + h Y, SW(nj+1)K(nhjh)y;, n=12.,NWT - 1.
=0
(b) Compute the inhomogenous terms
NWT-1
o, = f(nh) + h Y, SW(n,j+1)K(nh,jh)y;, n = NWT NWT+1,...,.N.
=0

(c) Start the iteration for n = NWT,NWT+1,...,N to compute y, from:
n-1
(1-hxOMEGA (1)K (nh,nh))y, = 0, + h Y, OMEGA (n-j+1)K(nhjh)y;.
~NWT
Note that for a nonlinear integral equation, the solution of a nonlinear algebraic system is
required at step (a) and a single nonlinear equation at step (c).

9. Example

The following example generates the first ten convolution and thirteen starting weights generated
by the fourth order BDF method.

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DOSBWF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
* .. Parameters .
INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER IORDER, NOMG, NWT, LDSW
PARAMETER (IORDER=4, NOMG=10, NWT=IORDER, LDSW=NOMG+IORDER-1)
* .. Local Scalars ..
INTEGER IFAIL, J, LENSW, N
* .. Local Arrays ..
real OMEGA (NOMG), SW(LDSW,NWT)
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20

40

*

*

99999

DOS5 — Integral Equations

.. External Subroutines

EXTERNAL DOSBWF

.. Executable Statements ..

WRITE (NOUT,*) ’'DO5BWF Example Program Results’
IFAIL = 0

CALL DOSBWF(’BDF’, IORDER, OMEGA, NOMG, LENSW, SW, LDSW, NWT, IFAIL)

WRITE (NOUT, *)
WRITE (NOUT,*) ’'The convolution weights’
WRITE (NOUT, *)

DO 20 N = 1, NOMG
WRITE (NOUT,99999) N - 1, OMEGA(N)
CONTINUE

WRITE (NOUT, *)
WRITE (NOUT, *) ’'The weights W’
WRITE (NOUT, *)

DO 40 N = 1, LENSW

WRITE (NOUT,99999) N, (SW(N,J),J=1,NWT)
CONTINUE
STOP

FORMAT (1X,I3,4X,6F10.4)
END

9.2. Program Data

None.

9.3. Program Results

DO5B

The

CodoaourbdWNERE O

Th

o

CoOdJaUbd WK

WF Example Program Results

convolution weights

0.4800
0.9216
1.0783
1.0504
0.9962
0.9797
0.9894
1.0003
1.0034
1.0017
weights W
0.3750 0.7917 -0.2083 0.0417
0.3333 1.3333 0.3333 0.0000
0.3750 1.1250 1.1250 0.3750
0.4800 0.7467 1.5467 0.7467
0.5499 0.5719 1.5879 0.8886
0.5647 0.5829 1.5016 0.8709
0.5545 0.6385 1.4514 0.8254
0.5458 0.6629 1.4550 0.8098
0.5449 0.6578 1.4741 0.8170
0.5474 0.6471 1.4837 0.8262
0.5491 0.6428 1.4831 0.8292
0.5492 0.6438 1.4798 0.8279
0.5488 0.6457 1.4783 0.8263

Page 4 (last)
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DOSBYF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

DOSBYF computes the fractional quadrature weights associated with the Backward
Differentiation Formulae (BDF) of orders 4, 5 and 6. These weights can then be used in the
solution of weakly singular equations of Abel type.

2. Specification
SUBROUTINE DO5SBYF (IORDER, IQ, LENFW, WT, SW, LDSW, WORK, LWK, IFAIL)

INTEGER IORDER, IQ, LENFW, LDSW, LWK, IFAIL
real WT (LENFW), SW(LDSW, 2*IORDER—-1), WORK(LWK)

3. Description

DO5SBYF computes the weights W, ; and @; for a family of quadrature rules related to a BDF
method for approximating the integral:

L | 29 4o o Nk SW, o0 +VE 3 o900 0<t<T 1
1 32 o S+ b E o o
with ¢ = nh (n20), for some given A. In (1), p is the order of the BDF method used and W, ,
@, are the fractional starting and the fractional convolution weights respectively. The algorithm
for the generation of @, is based on Newton’s iteration. Fast Fourier transform (FFT) techniques
are used for computing these weights and subsequently W, ; (see [1] and [2] for practical details
and [3] for theoretical details). Some special functions can be represented as the fractional
integrals of simpler functions and fractional quadratures can be employed for their computation
(see [3]). A description of how these weights can be used in the solution of weakly singular
equations of Abel type is given in Section 8.

4. References

[1] BAKER, C.T.H. and DERAKHSHAN, M.S.
Computational Approximations to Some Power Series.
In: ‘Approximation Theory’, Eds Meinardus and Nurnberger.
ISNM, Vol. 81, pp. 11-20, 1987.

[2] HENRICI, P.
Fast Fourier Methods in Computational Complex Analysis.
SIAM Review 21, pp. 481-529, 1979.

[3] LUBICH, Ch.
Discretized Fractional Calculus.
SIAM J. Math. Anal. 17, pp. 704-719, 1986.

5. Parameters

1:  IORDER - INTEGER. Input
On entry: the order of the BDF method to be used, p.
Constraint: 4 < IORDER < 6.

22 IQ - INTEGER. Input

On entry: determines the number of weights to be computed. By setting IQ to a value, 2'®"
fractional convolution weights are computed.

Constraint: 1Q 2 0.
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3:  LENFW - INTEGER. Input
On entry: the length of the array WT.
Constraint: LENFW > 2'®2,

4. WT(LENFW) - real array. Output

On exit: the first 2'®* elements of WT contains the fractional convolution weights o,, for
i =0,1,..2"®' 1. The remainder of the array is used as workspace.

5:  SW(LDSW,2+IORDER-1) — real array. Output
On exit: SW(n,j+1) contains the fractional starting weights W, , 0
for n = 1,2,...,(2'¥'+2xIORDER-1); j = 0,1,...,2xIORDER — 2.

6: LDSW — INTEGER. Input

Onentry: the first dimension of the array SW as declared in the (sub)program from which
DOSBYF is called.

Constraint: LDSW > 2! 4 2%IORDER - 1.

7 WORK(LWK) - real array. Workspace
8: LWK - INTEGER. Input

Onentry: the dimension of the array WORK as declared in the (sub)program from which
DOSBYF is called.

Constraint: LWK > 2@+

9:  IFAIL - INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL = 1
On entry, IORDER < 4 or IORDER > 6,
or IQ < 0,
or LENFW < 2102
or LDSW < 2'%*' 4 2xIORDER - 1,
or LWK < 219,

7. Accuracy
None.

8. Further Comments

Fractional quadrature weights can be used for solving weakly singular integral equations of Abel
type. In this section, we propose the following algorithm which users may find useful in solving
a linear weakly singular integral equation of the form

y() = f(r) + 1 J Mds, 0<r<T, (2)
vr J, t—s

using DOSBYF. In (2), K(t,s) and f(¢) are given and the solution y(¢) is sought on a uniform
mesh of size h such that T = Nh. Discretization of (2) yields
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2p-2 n
Yo = f(nk) + vk YW, K(nhjh)y;, + Nk Y, o, K(nhjh)y;, 3)
j=0 j=2p-1
where y, = y(nh). We propose the following algorithm for computing y, from (3) after a call
to DOSBYF:

(a) SetN = 2! 4 2xIORDER - 2 and h = T/N.

(b) Equation (3) requires 2xIORDER - 2 starting values, y;, forj = 1,2,...,2xIORDER - 2,
with y, = f(0). These starting values can be computed by solving the system
2xIORDER-2

Yo = finh) + ¥h Y, SW(n+l,j+1)K(nhjh)y,,
=0
n = 12,..2xIORDER - 2.

(c) Compute the inhomogeneous terms

2xIORDER-2
0, = f(nh) + vh 5 SW(n+l,j+1)K(nhjh)y;,
=0

n = 2xIORDER-1,2xIORDER,...,N.
(d) Start the iteration for n = 2xIORDER-1,2xIORDER,...,N to compute y, from:

n-1
(1-VhAWT(1)K(nh,nh))y, = 0, + Yo Y, WT(n-j+1)K(nh,jh)y;.
j=2>xIORDER-1

Note that for nonlinear weakly singular equations, the solution of a nonlinear algebraic system is
required at step (b) and a single nonlinear equation at step (d).

9. Example

The following example generates the first 16 fractional convolution and 23 fractionl starting
weights generated by the fourth order BDF method.

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO5SBYF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
* .. Parameters
INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER IORDER, IQ, ITPMT, ITIQ, LENFW, LDSW, LWK
PARAMETER (IORDER=4, IQ=3, ITPMT=2*IORDER-1, ITIQ=2** (IQ+1l),
+ LENFW=2*ITIQ, LDSW=ITIQ+ITPMT, LWK=4*ITIQ)
* .. Local Scalars ..
INTEGER I, IFAIL, J
* .. Local Arrays ..
real SW(LDSW, ITPMT), WORK(LWK), WT(LENFW)
* .. External Subroutines ..
EXTERNAL DOSBYF
* .. Executable Statements

WRITE (NOUT,*) ’'DOS5BYF Example Program Results’
WRITE (NOUT, *)
IFAIL = O

CALL DOSBYF(IORDER, IQ, LENFW, WT, SW, LDSW, WORK, LWK, IFAIL)

WRITE (NOUT, *) ’'Fractional convolution weights’
WRITE (NOUT, *)
DO 20 I =1, ITIQ
WRITE (NOUT,99999) I - 1, WT(I)
20 CONTINUE .
WRITE (NOUT, *)
WRITE (NOUT,*) ’‘Fractional starting weights’
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WRITE (NOUT, *)
DO 40 I =

WRITE (NOUT,99999) I - 1,

40 CONTINUE

*

*

99999 FORMAT (1X,I5,7F9.4)

STOP

END

9.2. Program Data
None.

9.3. Program Results
DO5BYF Example Program Results

1,

LDSW

Fractional convolution weights

CoOoOJoaaUdWNEO

[e=jelololoNoloolooloNoNoNoNoNe)

.6928
.6651
.4589
.3175
.2622
.2451
.2323
.2164
.2006
.1878
.1780
.1700
.1629
.1566
.1508
.1457

Fractional starting weights

CoOdOTOBWNDERFRO

[ejojojooNoloNojojoRoNoNooNoNeNoNoloNoRoNeNe)

.0000
.0565
.0371
.0300
.0258
.0230
.0208
.0190
.0173
.0160
.0149
.0140
.0132
.0125
.0119
.0114
.0110
.0105
.0102
.0098
.0095
.0093
.0090

ool eojoNoloNeoNoloNoNoNoloNoNoNoNoNoN Sl i N SN ol

.0000
.8928
.7401
.3207
.1217
.9862
.9001
.8506
.8177
.7886
.7603
.7338
.7097
.6880
.6681
.6497
.6327
.6168
.6020
.5882
.5752
.5631
.5517

.0000
.7497
.8628
.4642
.2620
.0034
.8989
.9250
.9697
.9781
.9548
.9198
.8842
.8497
.8153
.7805
L7461
.7126
.6804
.6495
.6199
.5916
.5644

(SW(1,J),J=1, ITPMT)

WWWWWWWLEAELEABRDMADRLEDUAGKRO

.0000
.6491
.5207
.3612
.3683
.5005
.2847
.4164
.5348
.5318
.4545
.3619
.2754
.1933
.1109
.0279
.9463
.8677
.7926
.7209
.6523
.5867
.5240

.0000
.1355
.4058
.4478
.7553
.2772
.5881
.0181
.2425
.2769
.2332
.1782
.1246
.0662
.0004
.9304
.8598
.7907
.7238
.6589
.5961
.5356
L4774

DOS5 — Integral Equations

NNNMNMNNNDNONMNNNONNNODNDNDNNNNDNDNODNDNDWOO

.0000
.5374
.2249
.7025
.2132
.7262
.8201
.7932
.7458
.6997
.6541
.6059
.5544
.5011
.4479
.3962
.3466
.2990
.2536
.2101
.1686
.1291
.0914

0.0000
-1.1223
-0.6583
-0.5481
-0.4549
-0.4320

0.2253

0.1564
-0.0697
-0.2127
-0.2620
-0.2716
-0.2767
-0.2845
-0.2915
-0.2951
-0.2958
-0.2950
-0.2935
-0.2917
-0.2895
-0.2871
-0.2844

Page 4 (last)
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Note. Please refer to the Users’ Note for your implementation to check that a routine is available.

Routine Mark of

Name Introduction Purpose

EO1AAF 1 Interpolated values, Aitken’s technique, unequally spaced data, one
variable

EO1ABF 1 Interpolated values, Everett’s formula, equally spaced data, one variable

EO1AEF 8 Interpolating functions, polynomial interpolant, data may include
derivative values, one variable

EO1BAF 8 Interpolating functions, cubic spline interpolant, one variable

EO1BEF 13 Interpolating functions, monotonicity-preserving, piecewise cubic Her-
mite, one variable

EO1BFF 13 Interpolated values, interpolant computed by E01BEF, function only,
one variable

EO1BGF 13 Interpolated values, interpolant computed by E01BEF, function and first
derivative, one variable

EO1BHF 13 Interpolated values, interpolant computed by EO1BEF, definite integral,
one variable

EO1DAF 14 Interpolating functions, fitting bicubic spline, data on rectangular grid

EO1RAF 9 Interpolating functions, rational interpolant, one variable

EO1RBF 9 Interpolated values, evaluate rational interpolant computed by EO1RAF,
one variable

EO01SAF 13 Interpolating functions, method of Renka and Cline, two variables

EO1SBF 13 Interpolated values, evaluate interpolant computed by E01SAF, two
variables

EO1SEF=* 13 Interpolating functions, modified Shepard’s method, two variables

EO1SFF* 13 Interpolated values, evaluate interpolant computed by E01SEF, two
variables

EO1SGF 18 Interpolating functions, modified Shepard’s method, two variables

EO1SHF 18 Interpolated values, evaluate interpolant computed by EO1SGF, function
and first derivatives, two variables

EO1TGF 18 Interpolating functions, modified Shepard’s method, three variables

EO1THF 18 Interpolated values, evaluate interpolant computed by EO1TGF, function

and first derivatives, three variables

* This routine is scheduled for withdrawal at Mark 20. See the document ‘Advice on Replacement Calls
for Withdrawn/Superseded Routines’ for details of the recommended replacement routine.
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1 Scope of the Chapter

This chapter is concerned with the interpolation of a function of one, two or three variables. When
provided with the value of the function (and possibly one or more of its lowest-order derivatives) at
each of a number of values of the variable(s), the routines provide either an interpolating function or an
interpolated value. For some of the interpolating functions, there are supporting routines to evaluate,
differentiate or integrate them.

2 Background to the Problems

In motivation and in some of its numerical processes, this chapter has much in common with the E02
Chapter Introduction (Curve and Surface Fitting). For this reason, we shall adopt the same terminology
and refer to dependent variable and independent variable(s) instead of function and variable(s). Where
there is only one independent variable, we shall denote it by = and the dependent variable by y. Thus,
in the basic problem considered in this chapter, we are given a set of distinct values z,,z,,...,z,, of z
and a corresponding set of values y;,¥s, ..., ¥y, of y, and we shall describe the problem as being one of
interpolating the data points (z,,y,), rather than interpolating a function. In modern usage, however,
interpolation can have either of two rather different meanings, both relevant to routines in this chapter.
They are

(a) the determination of a function of z which takes the value y, at ¢ = z,, for r = 1,2,...,m (an
interpolating function or interpolant),

(b) the determination of the value (interpolated value or interpolate) of an interpolating function at
any given value, say &, of z within the range of the z_ (so as to estimate the value at & of the
function underlying the data).

The latter is the older meaning, associated particularly with the use of mathematical tables. The
term ‘function underlying the data’, like the other terminology described above, is used so as to cover
situations additional to those in which the data points have been computed from a known function, as
with a mathematical table. In some contexts, the function may be unknown, perhaps representing the
dependency of one physical variable on another, say temperature upon time.

Whether the underlying function is known or unknown, the object of interpolation will usually be to
approximate it to acceptable accuracy by a function which is easy to evaluate anywhere in some range of
interest. Polynomials, rational functions (ratios of two polynomials) and piecewise polynomials, such as
cubic splines (see Section 2.2 of the E02 Chapter Introduction for definitions of terms in the latter case),
being easy to evaluate and also capable of approximating a wide variety of functions, are the types of
function mostly used in this chapter as interpolating functions. An interpolating polynomial is taken to
have degree m—1 when there are m data points, and so it is unique. It is called the Lagrange interpolating
polynomial. The rational function, in the special form used, is also unique. An interpolating spline, on
the other hand, depends on the choice made for the knots.

One way of achieving the objective in (b) above is, of course, through (a), but there are also methods
which do not involve the explicit computation of the interpolating function. Everett’s formula and
Aitken’s successive linear interpolation (see Froberg [2]) provide two such methods. Both are used in this
chapter and determine a value of the Lagrange interpolating polynomial.

It is important to appreciate, however, that the Lagrange interpolating polynomial often exhibits
unwanted fluctuations between the data points. These tend to occur particularly towards the ends of the
data range, and to get larger with increasing number of data points. In severe cases, such as with 30 or
40 equally spaced values of z, the polynomial can take on values several orders of magnitude larger than
the data values. (Closer spacing near the ends of the range tends to improve the situation, and wider
spacing tends to make it worse.) Clearly, therefore, the Lagrange polynomial often gives a very poor
approximation to the function underlying the data. On the other hand, it can be perfectly satisfactory
when its use is restricted to providing interpolated values away from the ends of the data range from a
reasonably small number of data values.

In contrast, a cubic spline which interpolates a large number of data points can often be used satisfactorily
over the whole of the data range. Unwanted fluctuations can still arise but much less frequently and much
less severely than with polynomials. Rational functions, when appropriate, would also be used over the
whole data range. The main danger with these functions is that their polynomial denominators may take
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zero values within that range. Unwanted fluctuations are avoided altogether by a routine using piecewise
cubic polynomials having only first derivative continuity. It is designed especially for monotonic data,
but for other data still provides an interpolant which increases, or decreases, over the same intervals as
the data.

The concept of interpolation can be generalised in a number of ways. Firstly, at each z, the interpolating
function may be required to take on not only a given value but also given values for all its derivatives
up to some specified order (which can vary with r). This is the Hermite-Birkoff interpolation problem.
Secondly, we may be required to estimate the value of the underlying function at a value  outside the
range of the data. This is the process of extrapolation. In general, it is a good deal less accurate than
interpolation and is to be avoided whenever possible.

Interpolation can also be extended to the case of two or more independent variables. If the data values
are given at the intersections of a regular two-dimensional mesh bicubic splines (see Section 2.3.2 of
the E02 Chapter Introduction) are very suitable and usually very effective for the problem. For other
cases, perhaps where the data values are quite arbitrarily scattered, polynomials and splines are not at
all appropriate and special forms of interpolating function have to be employed. Many such forms have
been devised and two of the most successful are in routines in this chapter. They both have continuity
in first, but not higher, derivatives.

3 Recommendations on Choice and Use of Available Routines

Note. Refer to the Users’ Note for your implementation to check that a routine is available.

3.1 General

Before undertaking interpolation, in other than the simplest cases, the user should seriously consider
the alternative of using a routine from the E02 Chapter Introduction to approximate the data by
a polynomial or spline containing significantly fewer coefficients than the corresponding interpolating
function. This approach is much less liable to produce unwanted fluctuations and so can often provide a
better approximation to the function underlying the data.

When interpolation is employed to approximate either an underlying function or its values, the user will
need to be satisfied that the accuracy of approximation achieved is adequate. There may be a means
for doing this which is particular to the application, or the routine used may itself provide a means. In
other cases, one possibility is to repeat the interpolation using one or more extra data points, if they
are available, or otherwise one or more fewer, and to compare the results. Other possibilities, if it is
an interpolating function which is determined, are to examine the function graphically, if that gives
sufficient accuracy, or to observe the behaviour of the differences in a finite-difference table, formed from
evaluations of the interpolating function at equally-spaced values of x over the range of interest. The
spacing should be small enough to cause the typical size of the differences to decrease as the order of
difference increases.

3.2 One Independent Variable
3.2.1 Interpolated values: data without derivatives

When the underlying function is well represented by data points on both sides of the value, &, at which
an interpolated value is required, EO1ABF should be tried first if the data points are equally spaced,
EO01AAF if they are not. Both compute a value of the Lagrange interpolating polynomial, the first using
Everett’s formula, the second Aitken’s successive linear interpolation. The first routine requires an equal
(or nearly equal) number of data points on each side of Z; such a distribution of points is preferable
also for the second routine. If there are many data points, this will be achieved simply by using only an
appropriate subset for each value of . Ten to twelve data points are the most that would be required for
many problems. Both routines provide a means of assessing the accuracy of an interpolated value, with
E01ABF by examination of the size of the finite differences supplied, with EO1AAF by intercomparison
of the set of interpolated values obtained from polynomials of increasing degree.

In other cases, or when the above routines fail to produce a satisfactory result, one of the routines
discussed in the next section should be used. The spline and other piecewise polynomial routines are
the most generally applicable. They are particularly appropriate when interpolated values towards the
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ends of the range are required. They are also likely to be preferable, for reasons of economy, when many
interpolated values are required.

EO1AAF above, and three of the routines discussed in the next section, can be used to compute
extrapolated values. These three are EOLAEF, EO1BEF and EOIRATF based on polynomials, piecewise
polynomials and rational functions respectively. Extrapolation is not recommended in general, but can
sometimes give acceptable results if it is to a point not far outside the data range, and only the few
nearest data points are used in the process. EO1IRAF is most likely to be successful.

3.2.2 Interpolating function: data without derivatives

EO1AEF computes the Lagrange interpolating polynomial by a method (based on Newton’s formula with
divided differences [1]) which has proved numerically very stable. Thus, it can sometimes be used to
provide interpolated values in more difficult cases than can EOIAAF (see previous section). However, the
likelihood of the polynomial having unwanted fluctuations, particularly near the ends of the data range
when a moderate or large number of data points are used, should be remembered.

Such fluctuations of the polynomial can be avoided if the user is at liberty to choose the z-values at which
to provide data points. In this case, a routine from Chapter E02, namely EO2ZAFF, should be used in the
manner and with the z-values discussed in Section 3.2.2 of the E02 Chapter Introduction.

Usually however, when the whole of the data range is of interest, it is preferable to use a cubic spline
as the interpolating function. EO1BAF computes an interpolating cubic spline, using a particular choice
for the set of knots which has proved generally satisfactory in practice. If the user wishes to choose a
different set, a cubic spline routine from Chapter E02, namely E02BAF, may be used in its interpolating
mode, setting NCAP7 = M + 4 and all elements of the parameter W to unity.

The cubic spline does not always avoid unwanted fluctuations, especially when the data show a steep
slope close to a region of small slope, or when the data inadequately represent the underlying curve. In
such cases, EO1BEF can be very useful. It derives a piecewise cubic polynomial (with first derivative
continuity) which, between any adjacent pair of data points, either increases all the way, or decreases all
the way (or stays constant). It is especially suited to data which are monotonic over their whole range.

In this routine, the interpolating function is represented simply by its value and first derivative at the
data points. Supporting routines compute its value and first derivative elsewhere, as well as its definite
integral over an arbitary interval. The other routines above provide the interpolating function either in
Chebyshev-series form or in B-spline form (see Section 2.2.1 of the E02 Chapter Introduction and Section
2.2.2 of the E02 Chapter Introduction). Routines for evaluating, differentiating and integrating these
forms are discussed in Section 3.7 of the E02 Chapter Introduction. The splines and other piecewise
cubics will normally provide better estimates of the derivatives of the underlying function than will
interpolating polynomials, at any rate away from the central part of the data range.

EO1RAF computes an interpolating rational function. It is intended mainly for those cases where the
user knows that this form of function is appropriate. However, it is also worth trying in cases where
the other routines have proved unsatisfactory. EO1RBF is available to compute values of the function
provided by EO1RAF.

3.2.3 Data containing derivatives

E01AEF (see previous section) can also compute the polynomial which, at each z,, has not only a specified
value y, but also a specified value of each derivative up to order p,.

3.3 Two Independent Variables

3.3.1 Data on a rectangular mesh

Given the value fqr of the dependent variable f at the point (zq,yr) in the plane of the independent
variables z and y, for each ¢ = 1,2,...,m and r = 1,2,...,n (so that the points (:cq,yr) lie at the
m x n intersections of a rectangular mesh), EOIDAF computes an interpolating bicubic spline, using
a particular choice for each of the spline’s knot-set. This choice, the same as in E01BAF, has proved
generally satisfactory in practice. If, instead, the user wishes to specify his own knots, a routine from
Chapter E02, namely E02DAF, may be adapted (it is more cumbersome for the purpose, however, and
much slower for larger problems). Using m and n in the above sense, the parameter M must be set to

E01.4 [NP3086/18]



EQ1 - Interpolation Introduction — E01

m x n, PX and PY must be set to m + 4 and n + 4 respectively and all elements of W should be set to
unity. The recommended value for EPS is zero.

3.3.2 Arbitrary data

As remarked at the end of Section 2, special types of interpolating are required for this problem, which
can often be difficult to solve satisfactorily. Two of the most successful are employed in EO1SAF and
EO1SGF, the two routines which (with their respective evaluation routines EQ1ISBF and EQ1SHF) are
provided for the problem. Definitions can be found in the routine documents. Both interpolants have
first derivative continuity and are ‘local’, in that their value at any point depends only on data in the
immediate neighbourhood of the point. This latter feature is necessary for large sets of data to avoid
prohibitive computing time. EOISHF allows evaluation of the interpolant and its first partial derivatives.

The relative merits of the two methods vary with the data and it is not possible to predict which will be
the better in any particular case.

3.4 Three Independent Variables

3.4.1 Arbitrary data

The routine EQOITGF and its evaluation routine EO1THF are provided for interpolation of three
dimensional scattered data. As in the case of two independent variables, the method is local, and

produces an interpolant with first derivative continuity. EO1THF allows evaluation of the interpolant
and its first partial derivatives.
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4 Decision Trees

Dataon
1 independent more yes
-——-EOIDAF
variable or rectangular _
mesh?
more?
1 no
Does data contain yes — . 3
N EO1AEF 2 independent
2 ____-EOITGF
derivatives’ variables or 3? -
no 2
| EOISAF or EOISGF |
Interpolating

function or only function Do.es the user wish yes :]EOlBEF
interpolated {0 Impose

values required? monotonicity?
no
Polynomial, rational :
. ; polynomial
values function or spline { EO1AEF I
preferred?
rational
function
I EOIRAF I
spline/don’t
mind
Well away from no Mmoo [ o yes
end of data range? 1 EO1BAF [ i Acceptable result? END
yes no
Data points yes
equally spaced? @ LM
no
I EO1AAF I
5 Index
Derivative, of interpolant from EQ1BEF EO01BGF
Derivative, of interpolant from EQ01SGF EO1SHF
Derivative, of interpolant from E01TGF EO1THF
Evaluation, of interpolant
from EQ1BEF EO1BFF
from EO1RAF EO1RBF
from E01SAF EO1SBF
from E01SGF EO1SHF
from EO1TGF EO1THF
Extrapolation, one variable EO1AAF
EO1AEF
EO1BEF
EO1RAF
Integration (definite) of interpolant from E01BEF EO1BHF
Interpolated values, one variable,
from interpolant from E01BEF EO1BFF
EO1BGF
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from polynomial,
equally spaced data
general data
from rational function

Interpolated values, two variables,
from interpolant from EQ01SAF
from interpolant from E01SGF

Interpolating function, one variable,

. cubic spline
other piecewise polynomial
polynomial, data with or without derivatives
rational function

Interpolating function, two variables
bicubic spline
other piecewise polynomial
modified Shepard method

Interpolating function, three variables
modified Shepard method

Introduction - E01

EO1ABF
EO1AAF
EO1RBF

EO1SBF
EO1SHF

EO1BAF
EO1BEF
EO1AEF
EO1RAF

EO1DAF
EO1SAF
EO01SGF

EO1TGF

6 Routines Withdrawn or Scheduled for Withdrawal

Since Mark 13 the following routines have either been withdrawn or superseded. Those routines indicated
by a dagger are still present at Mark 19, but will be omitted at a future date. Advice on replacing calls
to these routines is given in the document ‘Advice on Replacement Calls for Withdrawn/Superseded

Routines’.

E01ACF E01SEFt E01SFF}

7 References

[1] Froberg C E (1970) Introduction to Numerical Analysis Addison-Wesley
[2] Dahlquist G and Bjorck A(1974) Numerical Methods Prentice-Hall
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EO1AAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

EO1AAF interpolates at a given point x from a table of function values y; evaluated at equidistant
or non-equidistant points x,, for i = 1,2,...,n+1, using Aitken’s technique of successive linear
interpolations.

2. Specification
SUBROUTINE EO1AAF (A, B, C, N1, N2, N, X)

INTEGER N1, N2, N
real A(N1), B(N1), C(N2), X

3. Description

This routine interpolates at a given point x from a table of values x; and y,, for i = 1,2,...,n+1
using Aitken’s method. The intermediate values of linear interpolations are stored to enable an
estimate of the accuracy of the results to be made.

4. References

[1] FROBERG, C.E.
Introduction to Numerical Analysis.
Addison-Wesley Publishing Company Inc., pp. 148-151, (2nd Edition) 1970.

5. Parameters
A(N1) — real array. Input/ Output
On entry. A(i) must contain the x—component of the ith data point, x,, fori = 1,2,..,n+1.
Onexit: A(i) contains the value x, — x, for i = 1,2,...,n+1.

22 B(N1) - real array. Input/ Qutput
On entry. B (i) must contain the y-component (function value) of the ith data point, y,, for
i=1.2,.n+l.

On exit: the contents of B are unspecified.

3:  C(N2) - real array. Output
On exit:

C(1),...,C(n) contain the first set of linear interpolations,
C(n+1),...,,C(2xn—1) contain the second set of linear interpolations

C(nx(n+1)/2) contains the interpolated function value at the point x.

4: NI - INTEGER. Input
On entry: the value n + 1 where n is the number of intervals; that is, N1 is the number of
data points.

5: N2 - INTEGER. Input
On entry: the value nx(n+1)/2 where n is the number of intervals.

6: N — INTEGER. Input

On entry: the number of intervals which are to be used in interpolating the value at x; that is,
there are n + 1 data points (x,,y;).
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9.1.

Page 2

X —real. Input
On entry: the point x at which the interpolation is required.

Error Indicators and Warnings
None.

Accuracy

An estimate of the accuracy of the result can be made from a comparison of the final result and
the previous interpolates, given in the array C. In particular, the first interpolate in the ith set, for
i = 1,2,..,n, is the value at x of the polynomial interpolating the first i + 1 data points. It is
given in position 1 + 4(i—1) (2n—i+2) of the array C. Ideally, providing n is large enough, this
set of n interpolates should exhibit convergence to the final value, the difference between one
interpolate and the next settling down to a roughly constant magnitude (but with varying sign).
This magnitude indicates the size of the error (any subsequent increase meaning that the value of
n is too high). Better convergence will be obtained if the data points are supplied, not in their
natural order, but ordered so that the first i data points give good coverage of the neighbourhood
of x, for all i. To this end, the following ordering is recommended as widely suitable: first the
point nearest to x, then the nearest point on the opposite side of x, followed by the remaining
points in increasing order of their distance from x, that is of |x,—x|. With this modification the
Aitken method will generally perform better than the related method of Neville, which is often
given in the literature as superior to that of Aitken.

Further Comments
The computation time for interpolation at any point x is proportional to nx(n+1)/2.

Example

To interpolate at x = 0.28 the function value of a curve defined by the points

x; —1.00 -0.50 0.00 0.50 1.00 1.50
y; 0.00 —-0.53 -1.00 -0.46 2.00 11.09/

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* EOlAAF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters
INTEGER NMAX, NI1IMAX, N2MAX
PARAMETER (NMAX=9, N1IMAX=NMAX+1, N2MAX=NMAX*N1MAX/2)
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
* .. Local Scalars ..
real X
INTEGER 1, J, K, N
* .. Local Arrays
real A(N1MAX), B(N1MAX), C(N2MAX)
* .. External Subroutines
EXTERNAL EO1lAAF
* .. Executable Statements ..
WRITE (NOUT,*) ’'EOlAAF Example Program Results’
* Skip heading in data file

READ (NIN, *)

READ (NIN,*) N, X

IF (N.GT.0 .AND. N.LE.NMAX) THEN
READ (NIN,*) (A(I),I=1,N+1)
READ (NIN,*) (B(I),I=1,N+1)

[NP1692/14]



EOI - Interpolation E01AAF

CALL EO1AAF(A,B,C,N+1,N*(N+1)/2,N,X)

K=1
WRITE (NOUT, *)
WRITE (NOUT, *) ’'Interpolated values’
DO 20I =1, N -1
WRITE (NOUT, 99999) (C(J),J=K,K+N-I)
K=K+N-1I+ 1
20 CONTINUE
WRITE (NOUT, *)
WRITE (NOUT,99998) ’'Interpolation point = ', X
WRITE (NOUT, *)
WRITE (NOUT,99998) ’'Function value at interpolation point = ',
+ C(N*(N+1)/2)
END IF
STOP
*
99999 FORMAT (1X,6F12.5)
99998 FORMAT (1X,A,F12.5)
END

9.2. Program Data

EO1AAF Example Program Data
5 0.28
-1.00 -0.50 0.00 0.50 1.00 1.50
0.00 -0.53 -1.00 -0.46 2.00 11.09
9.3. Program Results

EOlAAF Example Program Results

Interpolated values

-1.35680 -1.28000 -0.39253 1.28000 5.67808
-1.23699 -0.60467 0.01434 1.38680
-0.88289 -0.88662 -0.74722
-0.88125 -0.91274
Interpolation point = 0.28000
Function value at interpolation point = -0.83591
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EO01ABF - NAG Fortran Library Routine Document

Note: before usmg this routine, please read the Users’ Note for your lmplementauon to check the interpretation of bold italicised terms and

other i

pl tation-dependent details. The routine name may be precision-dependent.

Purpose

EO1ABEF interpolates at a given point x from a table of function values evaluated at equidistant
points, by Everett’s formula.

Specification
SUBROUTINE EO1ABF (N, P, A, G, N1, N2, IFAIL)
INTEGER N, N1, N2, IFAIL
real P, A(N1), G(N2)

Description

This routine interpolates at a given point
x =xy +ph, where-1<p<1

from a table of values (x,+mh) and y, where m = —(n—1),-(n-2),...,~1,0,1,...,n. The formula
used is that of Everett [1], neglecting the remainder term:

_ I-p+r\ 52 < [ ptr
Y = Z(zm) Yo ¥ Z(zn)
The values of 6”y, and 6%y, are stored on exit from the routine in addition to the interpolated
function value y,.

References

[1] FROBERG, CE.
Introduction to Numerical Analysis.
Addison-Wesley Publishing Company Inc., pp. 174-182, 1969.

Parameters
N — INTEGER. Input
On entry: n, half the number of points to be used in the interpolation.

P — real. Input

On entry: the point p at which the interpolated function value is required i.e. p = (x—x,)/h
with -1.0 < p < 1.0.

Constraint: -1.0 < P < 1.0.

A(N1) — real array. Input/ Output
On entry: A(i) must be set to the function value y,_, for i = 1,2,...,2n.
On exit: the contents of A are unspecified.

G(N2) - real array. Output
On exit: the array contains
Yo inG(1)
Y1 in G(2)

8%y, in G(2r+1)
8y, in G(2r+2) forr = 12,..,n-1.
The interpolated function value y, is stored in G(2n+1).
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9.1.

Page 2

N1 — INTEGER. Input
On entry: the value 2n, that is, N1 is equal to the number of data points.

N2 — INTEGER. Input
On entry: the value 2n + 1, that is, N2 is one more than the number of data points.

IFAIL — INTEGER. Input/ Output

Onentry. IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is O.

Onexit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

IFAIL =1
On entry, P < -1.0,
or P = 1.0.
Accuracy

In general, increasing n improves the accuracy of the result until full attainable accuracy is
reached, after which it might deteriorate. If x lies in the central interval of the data (i.e.
0.0 £ p £ 1.0), as is desirable, an upper bound on the contribution of the highest order
differences (which is usually an upper bound on the error of the result) is given approximately
in terms of the elements of the array G by ax(|G(2n-1)|+]|G(2n)|), where a = 0.1, 0.02,
0.005, 0.001, 0.0002 for n = 1,2,3,4,5 respectively, thereafter decreasing roughly by a factor of
4 each time.

Further Comments
The computation time increases as the order of n increases.

Example

To interpolate at the point x = 0.28 from the function values
x; =1.00 -0.50 0.00 0.50 1.00 1.50
(y,. 0.00 -0.53 -1.00 -0.46 2.00 11.09)'

We take n = 3 and p = 0.56.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* EO1ABF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters
INTEGER NMAX, N1MAX, N2MAX
PARAMETER (NMAX=10, NIMAX=2*NMAX, N2MAX=2*NMAX+1)
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
* .. Local Scalars ..
real P
INTEGER I, IFAIL, N, R
* .. Local Arrays
real A(N1MAX), G(N2MAX)
* .. External Subroutines
EXTERNAL EO1lABF
* .. Executable Statements

WRITE (NOUT,*) ’'EOl1ABF Example Program Results’
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* Skip heading in data file
READ (NIN, *)
READ (NIN,*) N, P
IF (N.GT.0 .AND. N.LE.NMAX) THEN
READ (NIN,*) (A(I),I=1,2*N)
IFAIL = 0

CALL EO1ABF(N,P,A,G,2*N,2*N+1, IFAIL)
WRITE (NOUT, *)

DO 20 R=0, N -1
WRITE (NOUT,99999) ‘Central differences order ’, R,

+ " of YO =', G(2*R+1)
WRITE (NOUT,99998) Y1l =',
+ G(2*R+2)
20 CONTINUE

WRITE (NOUT, *)
WRITE (NOUT,99998) ’Function value at interpolation point =',
+ G(2*N+1)
END IF
STOP
*
99999 FORMAT (1X,A,Il1,A,F12.5)
99998 FORMAT (1X,A,F12.5)
END

9.2. Program Data

EO1lABF Example Program Data
3 0.56
0.00 -0.53 -1.00 -0.46 2.00 11.09

9.3. Program Results
EO1ABF Example Program Results

Central differences order 0 of Y0 = -1.00000

Yl = -0.46000
Central differences order 1 of YO0 = 1.01000

Yl = 1.92000
Central differences order 2 of Y0 = -0.04000

Yl = 3.80000
Function value at interpolation point = -0.83591
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EOI1AEF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose

EO1AEF constructs the Chebyshev-series representation of a polynomial interpolant to a set of
data which may contain derivative values.

Specification
SUBROUTINE EOlAEF (M, XMIN, XMAX, X, Y, IP, N, ITMIN, ITMAX, A, WRK,
1 LWRK, IWRK, LIWRK, IFAIL)
INTEGER M, IP(M), N, ITMIN, ITMAX, LWRK, IWRK(LIWRK),
1 LIWRK, IFAIL
real XMIN, XMAX, X(M), Y(N), A(N), WRK(LWRK)
Description

Let m distinct values x; of an independent variable x be given, with x_, < X; < X, for
i = 1,2,..,m. For each value x,, suppose that the value y; of the dependent variable y together
with the first p; derivatives of y with respect to x are given. Each p; must therefore be a

non-negative integer, with the total number of interpolating conditions, n, equal to m + Y. p,.
=1
EO1AEF calculates the unique polynomial g(x) of degree n — 1 (or less) which is such that
q® (x;) = y® fori = 1,2,..m; k = 0,1,...,p,. Here ¢'” (x,) means g(x,). This polynomial is
represented in Chebyshev-series form in the normalised variable X, as follows:
q(x) =4a,Ty(x) + a,T,(X) + ... + a,_,T,_, (%),
where

= min

Xmax — Xomi

max n

so that -1 < x < 1 for x in the interval x_, to x_, , and where T;(X) is the Chebyshev

polynomial of the first kind of degree i with argument X.

(The polynomial interpolant can subsequently be evaluated for any value of x in the given range
by using EO2AKF. Chebyshev-series representations of the derivative(s) and integral(s) of g(x)
may be obtained by (repeated) use of EO2AHF and E02AJF.)

The method used consists first of constructing a divided-difference table from the normalised X
values and the given values of y and its derivatives with respect to x. The Newton form of g(x)
is then obtained from this table, as described in Huddleston [1] and Krogh [2], with the
modification described in Section 8.2. The Newton form of the polynomial is then converted to
Chebyshev-series form as described in Section 8.3.

Since the errors incurred by these stages can be considerable, a form of iterative refinement is
used to improve the solution. This refinement is particularly useful when derivatives of rather
high order are given in the data. In reasonable examples, the refinement will usually terminate
with a certain accuracy criterion satisfied by the polynomial (see Section 7). In more difficult
examples, the criterion may not be satisfied and refinement will continue until the maximum
number of iterations (as specified by the input parameter ITMAX) is reached.

In extreme examples, the iterative process may diverge (even though the accuracy criterion is
satisfied): if a certain divergence criterion is satisfied, the process terminates at once. In all cases
the routine returns the ‘best’ polynomial achieved before termination. For the definition of ‘best’
and details of iterative refinement and termination criteria, see Section 8.4.
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4.

References

[1] HUDDLESTON, R.E.
CDC 6600 routines for the interpolation of data and of data with derivatives.
Sandia Laboratories. Reprint SLL-74-0214, 1974.

[2] KROGH, F.T.
Efficient algorithms for polynomial interpolation and numerical differentiation.
Math. Comp., 24, pp. 185-190, 1970.

Parameters

M - INTEGER. Input
On entry: m, the number of given values of the independent variable x.
Constraint: M 2 1.

XMIN - real. Input
XMAX — real. Input

On entry: the lower and uppér endpoints, respectively, of the interval [x ;. .x..]- If they are
not determined by the user’s problem, it is recommended that they be set respectively to the
smallest and largest values among the x;.

Constraint: XMIN < XMAX.

X(M) - real array. Input
On entry: the value of x,, for i = 1,2,...,m. The X(i) need not be ordered.
Constraint: XMIN < X(i) £ XMAX, and the X (i) must be distinct.

Y(N) — real array. Input
On entry: the given values of the dependent variable, and derivatives, as follows:
The first p, + 1 elements contain y,,y{",....,y %" in that order.

The next p, + 1 elements contain y,,y{",...y?) in that order.

The last p,, + 1 elements contain y,,,y.",...y ¥ in that order.

IP(M) — INTEGER array. Input

Onentry: p,, the order of the highest-order derivative whose value is given at x;, for
i = 1,2,...,m. If the value of y only is given for some x; then the corresponding value of
IP (i) must be zero.

Constraint: IP(i) 2 0, fori = 1,2,... M.

N — INTEGER. Input
On entry: the total number of interpolating conditions, n.
Constraint: N = M + IP(1) + IP(2) + ... + IP(M).

ITMIN - INTEGER. Input
ITMAX — INTEGER. Input

On entry: respectively the minimum and maximum number of iterations to be performed by
the routine (for full details see Section 8.4, second paragraph). Setting ITMIN and/or
ITMAX negative or zero invokes default value(s) of 2 and/or 10, respectively.
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10:

11:

12:

13:

14:

15:

The default values will be satisfactory for most problems, but occasionally significant
improvement will result from using higher values.

Suggested value: ITMIN = 0 and ITMAX = 0.

A(N) - real array. Output
Onexit: A(i) contains the coefficient a;_, in the Chebyshev-series representation of g(x),
fori = 1.2,.,n.

WRK(LWRK) — real array. Workspace

Used as workspace, but see also Section 8.5.

LWRK - INTEGER. Input

On entry: the dimension of the array WRK as declared in the (sub)program from which
EO1AEF is called.

Constraint: LWRK 2 7xN + S5xIPMAX + M + 7, where IPMAX is the largest value of
IP(i), fori = 1,2,.M.

IWRK(LIWRK) — INTEGER array. Workspace
Used as workspace, but see also Section 8.5.

LIWRK — INTEGER. Input

On entry: the dimension of the array IWRK as declared in the (sub)program from which
EO1AEF is called.

Constraint: LIWRK = 2xM + 2.

IFAIL — INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is O.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

IFAIL =1
On entry, M < 1,
or N=zM+ IP(1) + IP(2) + ... + IP(M),
or LWRK < 7xN + 5xIPMAX + M + 7,
or LIWRK < 2xM + 2

(IPMAX is defined under LWRK).

IFAIL = 2
On entry, IP(i) < O for some i.

IFAIL = 3
On entry, XMIN 2 XMAX,
or X (i) < XMIN for some i,
or X(i) > XMAX,
or X(i) = X(j) for some i # j.
IFAIL = 4

Not all the performance indices are less than eight times the machine precision, although
ITMAX iterations have been performed. Parameters A, WRK and IWRK relate to the best
polynomial determined. A more accurate solution may possibly be obtained by increasing
ITMAX and re-calling the routine. See also Sections 7 and 8.4-8.5.
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IFAIL = 5

The computation has been terminated because the iterative process appears to be diverging.
(Parameters A, WRK and IWRK relate to the best polynomial determined.) Thus the
problem specified by the user’s data is probably too ill-conditioned for the solution to be
satisfactory. This may result from some of the X (i) being very close together, or from the
number of interpolating conditions, N, being large. If in such cases the conditions do not
involve derivatives, the user is likely to obtain a much more satisfactory solution to his
problem either by cubic spline interpolation (see EO1BAF) or by curve fitting with a
polynomial or spline in which the number of coefficients is less than N, preferably much
less if N is large (see Chapter E02). But see Sections 7 and 8.4-8.5.

Accuracy

A complete error analysis is not currently available, but the method gives good results for
reasonable problems.

It is important to realise that for some sets of data, the polynomial interpolation problem is
ill-conditioned. That is, a small perturbation in the data may induce large changes in the
polynomial, even in exact arithmetic. Though by no means the worst example, interpolation
by a single polynomial to a large number of function values given at points equally spaced across
the range is notoriously ill-conditioned and the polynomial interpolating such a data set is prone
to exhibit enormous oscillations between the data points, especially near the ends of the range.
These will be reflected in the Chebyshev coefficients being large compared with the given
function values. A more familiar example of ill-conditioning occurs in the solution of certain
systems of linear algebraic equations, in which a small change in the elements of the matrix
and/or in the components of the right-hand side vector induces a relatively large change in the
solution vector. The best that can be achieved in these cases is to make the residual vector small
in some sense. If this is possible, the computed solution is exact for a slightly perturbed set of
data. Similar considerations apply to the interpolation problem.

The residuals y© — ¢® (x,) are available for inspection (see Section 8.5). To assess whether
these are reasonable, however, it is necessary to relate them to the largest function and derivative
values taken by g(x) over the interval [x ;. .x . ..]. The following performance indices aim to do
this. Let the kth derivative of ¢ with respect to the normalised variable X be given by the
Chebyshev-series

WasT,(X) + aT,(X) + .. + at_ | T, ,_(X).

Let A, denote the sum of the moduli of these coefficients (this is an upper bound on the kth
derivative in the interval and is taken as a measure of the maximum size of this derivative), and
define

S, = maxA,.
i<k
Then if the root-mean-square value of the residuals of ¢, scaled so as to relate to the
normalised variable ¥, is denoted by r,, the performance indices are defined by
Py = 1,/8;, for k = 0,1,...max (p;).
It is expected that, in reasonable cases, they will all be less than (say) 8 times the machine

precision (this is the accuracy criterion mentioned in Section 3), and in many cases will be of
the order of machine precision or less.

Further Comments

. Timing

Computation time is approximately proportional to ITxn?, where IT is the number of iterations
actually used. (See Section 8.5).
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8.2. Divided-difference Strategy

In constructing each new coefficient in the Newton form of the polynomial, a new x; must be
brought into the computation. The x; chosen is that which yields the smallest new coefficient.
This strategy increases the stability of the divided-difference technique, sometimes quite
markedly, by reducing errors due to cancellation.

8.3. Conversion to Chebyshev Form

Conversion from the Newton form to Chebyshev-series form is effected by evaluating the former
at the n values of x at which T,_, (X) takes the value %1, and then interpolating these n function
values by a call of EO2AFF, which provides the Chebyshev-series representation of the
polynomial with very small additional relative error.

8.4. Iterative Refinement

The iterative refinement process is performed as follows. First, an initial approximation, ¢, (x)
say, is found by the technique described above. The rth step of the refinement process then
consists of evaluating the residuals of the rth approximation ¢,(x), and constructing an
interpolant, dg,(x), to these residuals. The next approximation g,,, (x) to the interpolating
polynomial is then obtained as

qr+l (x) = qr(x) + dqr(x)
This completes the description of the rth step.

The iterative process is terminated according to the following criteria. When a polynomial is
found whose performance indices (as defined in Section 7) are all less than 8 times the machine
precision, the process terminates after ITMIN further iterations (or after a total of ITMAX
iterations if that occurs earlier). This will occur in most reasonable problems. The extra iterations
are to allow for the possibility of further improvement. If no such polynomial is found, the
process terminates after a total of ITMAX iterations. Both these criteria are over-ridden,
however, in two special cases. Firstly, if for some value of r the sum of the moduli of the
Chebyshev coefficients of dg, (x) is greater than that of ¢, (x), it is concluded that the process is
diverging and the process is terminated at once (g,,, (x) is not computed). Secondly, if at any
stage, the performance indices are all computed as zero, again the process is terminated at once.

As the iterations proceed, a record is kept of the best polynomial. Subsequently, at the end of
each iteration, the new polynomial replaces the current best polynomial if it satisfies two
conditions (otherwise the best polynomial remains unchanged). The first condition is that at least
one of its root-mean-square residual values, r, (see Section 7) is smaller than the corresponding
value for the current best polynomial. The second condition takes two different forms according
to whether or not the performance indices (see Section 7) of the current best polynomial are all
less than 8 times the machine precision. If they are, then the largest performance index of the
new polynomial is required to be less than that of the current best polynomial. If they are not, the
number of indices which are less than 8 times machine precision must not be smaller than for the
current best polynomial. When the iterative process is terminated, it is the polynomial then
recorded as best, which is returned to the user as g(x).

8.5. Workspace Information

On successful exit, and also if IFAIL = 4 or 5 on exit, the following information is contained in
the workspace arrays WRK and IWRK:

WRK (k+1), for k = 0,1,...IPMAX where IPMAX = max p,, contains the ratio of p,, the

performance index relating to the kth derivative of the g(x) finally provided, to 8 times the
machine precision.

WRK (IPMAX+1+j), for j = 1,2,...,n, contains the jth residual, i.e. the value of y/* — ¢™® (x,),
where i and k are the appropriate values corresponding to the jth element in the array Y (see
description of Y in Section 5).

IWRK (1) contains the number of iterations actually performed in deriving g(x).
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9.1.

If, on exit, IFAIL = 4 or 5, the g(x) finally provided may still be adequate for the user’s
requirements. To assess this the user should examine the residuals contained in
WRK (IPMAX+1+j), for j = 1,2,...,n, to see whether they are acceptably small.

Example
To construct an interpolant g(x) to the following data:
m=4, x. =2 x_.. =6,

x, =2, p=0  y =1,
X, =4, py=1, y,=2 y =-1,
Xy =35, p3= 0, y3=1,

N6 p=2 =2 0 =4 P =2

The coefficients in the Chebyshev-series representation of ¢(x) are printed, and also the residuals
corresponding to each of the given function and derivative values.

This program is written in a generalised form which can read any number of data-sets.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* EOlAEF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER MMAX, NMAX, IPMX, LWRK, LIWRK
PARAMETER (MMAX=4, NMAX=8, IPMX=2, LWRK=7 *NMAX+5* IPMX+MMAX+7,
+ LIWRK=2*MMAX+2)
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
* .. Local Scalars ..
real XMAX, XMIN
INTEGER I, IFAIL, IP1l, IPMAX, IRES, IY, J, M, N
* .. Local Arrays
real A(NMAX), WRK(LWRK), X(MMAX), Y(NMAX)
INTEGER IP(MMAX), IWRK(LIWRK)
* .. External Subroutines
EXTERNAL EO1lAEF
* .. Intrinsic Functions
INTRINSIC MAX
* .. Executable Statements ..
WRITE (NOUT,*) ‘EQlAEF Example Program Results’
* Skip heading in data file

READ (NIN, *)
20 READ (NIN,*,END=120) M, XMIN, XMAX
IF (M.GT.0 .AND. M.LE.MMAX) THEN
N =0
IPMAX = 0
DO 40 I =1, M
READ (NIN,*) IP(I), X(I), (Y(J),Jd=N+1,N+IP(I)+1)
IPMAX = MAX(IPMAX,IP(I))
N =N+ IP(I) + 1

40 CONTINUE
IF (N.LE.NMAX .AND. IPMAX.LE.IPMX) THEN
IFAIL =1

CALL EO1AEF (M, XMIN,XMAX,X,Y,IP,N,-1,-1,A,WRK, LWRK, IWRK,
+ LIWRK, IFAIL)

WRITE (NOUT, *)
IF (IFAIL.EQ.O0 .OR. IFAIL.GE.4) THEN
WRITE (NOUT, 99999)
+ 'Total number of interpolating conditions =’, N
WRITE (NOUT, *)
WRITE (NOUT,*) ’Interpolating polynomial’
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WRITE (NOUT, *)
WRITE (NOUT,=*) ' I Chebyshev Coefficient A(I+1)’
DO 60 I =1, N
WRITE (NOUT,99998) I - 1, A(I)
60 CONTINUE
WRITE (NOUT, *)
WRITE (NOUT,*) ' X R Rth derivative Residual’
IY =0
IRES = IPMAX + 1
DO 100 I =1, M
IP1 = IP(I) + 1
DO 80 J = 1, 1IP1
IY = IY + 1
IRES = IRES + 1
IF (J-1.NE.QO) THEN
WRITE (NOUT,99997) J - 1, Y(IY), WRK(IRES)

ELSE
WRITE (NOUT,99996) X(I), ' 0/, Y(IY),
+ WRK(IRES)
END IF
80 CONTINUE
100 CONTINUE
ELSE
WRITE (NOUT,99995) 'EOlAEF exits with IFAIL =’, IFAIL
END IF
END IF
GO TO 20
END IF

120 sTOP
*
99999 FORMAT (1X,A,I4)
99998 FORMAT (1X,I4,F20.3)
99997 FORMAT (5X,I4,F12.1,F17.6)
99996 FORMAT (1X,F4.1,A,F12.1,F17.6)
99995 FORMAT (1X,A,I2,A)

END

9.2. Program Data
EO1AEF Example Program Data

4 2.0 6.0

0 2.0 1.0

1 4.0 2.0 -1.0

0 5.0 1.0

2 6.0 2.0 4.0 -2.0

9.3. Program Results
EOlAEF Example Program Results

Total number of interpolating conditions = 7
Interpolating polynomial

Chebyshev Coefficient A(I+1)
9.125
-4.578
0.461
2.852
-2.813
2.227
-0.711

AU WNHOH
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Rth derivative
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2.
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Residual
.000000
.000000
.000000
.000000
.000000
.000000
.000000
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EO1BAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose
EO1BAF determines a cubic-spline interpolant to a given set of data.
Specification
SUBROUTINE EO1BAF (M, X, Y, LAMDA, C, LCK, WRK, LWRK, IFAIL)
INTEGER M, LCK, LWRK, IFAIL
real X(M), Y(M), LAMDA(LCK), C(LCK), WRK(LWRK)
Description

This routine determines a cubic spline s(x), defined in the range x, < x < x,,, which
interpolates (passes exactly through) the set of data points (x,,y;), for i = 1,2,...,m, where
m 2 4 and x; < x,< .. < x,. Unlike some other spline interpolation algorithms, derivative
end conditions are not imposed. The spline interpolant chosen has m—4 interior knots
As,Ags...A,,, Which are set to the values of x,,x,,...,x,,_, respectively. This spline is represented
in its B-spline form (see Cox [1]):

s(x) = iciNi(x)v
i=1

where N, (x) denotes the normalised B-Spline of degree 3, defined upon the knots A;,4,,,,....4,.4,
and c¢; denotes its coefficient, whose value is to be determined by the routine.

The use of B-splines requires eight additional knots A,, A,, A,, 4,, 4,.,;, An.2s A, and
Amsa to be specified; the routine sets the first four of these to x, and the last four to x,,.

m

The algorithm for determining the coefficients is as described in [1] except that QR factorization
is used instead of LU decomposition. The implementation of the algorithm involves setting up
appropriate information for the related routine EO2BAF followed by a call of that routine. (For
further details of EO2BAF, see the routine document.)

Values of the spline interpolant, or of its derivatives or definite integral, can subsequently be
computed as detailed in Section 8.

References

[1] COX, M.G.
An algorithm for spline interpolation.
J. Inst. Math. Appl., 15, pp. 95-108, 1975.

[2] COX, M.G.
‘A survey of numerical methods for data and function approximation’.
In: The State of the Art in Numerical Analysis, D.A.H. Jacobs, (ed).
Academic Press, London, pp. 627-668, 1977.

Parameters

M - INTEGER. Input
On entry: m, the number of data points.
Constraint: M 2 4.

X(M) — real array. Input
Onentry: X (i) must be set to x,, the ith data value of the independent variable x, for
i=12,.,m.

Constraint: X(i) < X(i+l1), fori = 1,2,...M-1.
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33 Y(M) - real array. Input
Onentry: Y(i) must be set to y,, the ith data value of the dependent variable y, for
i=12,..m

4  LAMDA(LCK) ~ real array. Output

On exit: the value of A,, the ith knot, for i = 1,2,...,m+4.

5:  C(LCK) - real array. Output

On exit: the coefficient c¢; of the B-spline N, (x), for i = 1,2,...,m. The remaining elements
of the array are not used.

6: LCK — INTEGER. Input

On entry: the dimension of the arrays LAMDA and C as declared in the (sub)program from
which EO1BAF is called.

Constraint: LCK 2 M + 4,

7. WRK(LWRK) - real array. Workspace
8: LWRK - INTEGER. Input

On entry: the dimension of the array WRK as declared in the (sub)program from which
EO1BAF is called.

Constraint: LWRK = 6xM + 16.

9: IFAIL — INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is O.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings
Errors detected by the routine:

IFAIL =1

On entry, M < 4,

or LCK < M + 4,

or LWRK < 6xM + 16.
IFAIL = 2

The X-values fail to satisfy the condition
X(1) < X(2) < X(3) < ... < X(M).

7. Accuracy
The rounding errors incurred are such that the computed spline is an exact interpolant for a
slightly perturbed set of ordinates y, + &y,. The ratio of the root-mean-square value of the dy, to
that of the y; is no greater than a small multiple of the relative machine precision.

8. Further Comments
The time taken by the routine is approximately proportional to m.

All the x; are used as knot positions except x, and x,,_,. This choice of knots (see Cox [2])
means that s(x) is composed of m — 3 cubic arcs as follows. If m = 4, there is just a single arc
space spanning the whole interval x, to x,. If m > 5, the first and last arcs span the intervals x,
to x, and x,_, to x,, respectively. Additionally if m 2 6, the ith arc, for i = 2,3,...,m—4 spans
the interval x,,, to x,,,.
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After the call
CALL EO1BAF (M, X, Y, LAMDA, C, LCK, WRK, LWRK, IFAIL)

the following operations may be carried out on the interpolant s(x).

The value of s(x) at x = XVAL can be provided in the real variable SVAL by the call
CALL EO2BBF (M+4, LAMDA, C, XVAL, SVAL, IFAIL)

The values of s(x) and its first three derivatives at x = XVAL can be provided in the real array
SDIF of dimension 4, by the call

CALL EO2BCF (M+4, LAMDA, C, XVAL, LEFT, SDIF, IFAIL)

Here LEFT must specify whether the left- or right-hand value of the third derivative is required
(see EO2BCF for details).

The value of the integral of s(x) over the range x, to x,, can be provided in the real variable
SINT by

CALL E02BDF (M+4, LAMDA, C, SINT, IFAIL)

9. Example

The following example program sets up data from 7 values of the exponential function in the
interval O to 1. EO1BAF is then called to compute a spline interpolant to these data.

The spline is evaluated by E02BBF, at the data points and at points halfway between each
adjacent pair of data points, and the spline values and the values of e* are printed out.

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please rea‘d
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* EO1BAF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER M, LCK, LWRK
PARAMETER (M=7, LCK=M+4, LWRK=6*M+16)
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Local Scalars ..
real FIT, XARG
INTEGER I, IFAIL, J, R
* .. Local Arrays ..
real C(LCK), LAMDA(LCK), WRK(LWRK), X(M), Y(M)
* .. External Subroutines
EXTERNAL EO1BAF, EO2BBF
* .. Intrinsic Functions
INTRINSIC EXP
* .. Data statements ..
DATA (X(I1),I=1,M)/0.0e0, 0.2e0, 0.4e0, 0.6e0, 0.75e0,
+ 0.90, 1.0e0/
* .. Executable Statements ..

WRITE (NOUT, *) ’"EO1BAF Example Program Results’
DO20I =1, M
Y(I) = EXP(X(I))
20 CONTINUE
IFAIL = 0

CALL EO1BAF(M,X,Y,LAMDA,C, LCK, WRK, LWRK, IFAIL)

WRITE (NOUT, *)

WRITE (NOUT,*) ' J Knot LAMDA(J+2) B-spline coeff C(J)’
WRITE (NOUT, *)
J =1

WRITE (NOUT,99998) J, C(1)
DO 40 0 =2, M -1
WRITE (NOUT,99999) J, LAMDA(J+2), C(J)
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40 CONTINUE

WRITE (NOUT,99998) M, C(M)
WRITE (NOUT, *)
WRITE (NOUT, *)

EO1 — Interpolation

+ R Abscissa Ordinate Spline’
WRITE (NOUT, *)
DO 60 R =1, M
IFAIL = 0
*
CALL EO02BBF(M+4,LAMDA,C,X(R),FIT,IFAIL)
*
WRITE (NOUT,99999) R, X(R), Y(R), FIT
IF (R.LT.M) THEN
XARG = 0.5€0* (X(R)+X(R+1))
*
CALL EO2BBF(M+4,LAMDA,C,XARG,FIT,IFAIL)
*
WRITE (NOUT,99997) XARG, FIT
END IF
60 CONTINUE
STOP
*
99999 FORMAT (1X,I4,F15.4,2F20.4)
99998 FORMAT (1X,I4,F35.4)
99997 FORMAT (1X,F19.4,F40.4)
END
9.2. Program Data
None.
9.3. Program Results
EO1BAF Example Program Results
J Knot LAMDA(J+2) B-spline coeff C(J)
1 1.0000
2 0.0000 1.1336
3 0.4000 1.3726
4 0.6000 1.7827
5 0.7500 2.1744
6 1.0000 2.4918
7 2.7183
R Abscissa Ordinate Spline
1 0.0000 1.0000 1.0000
0.1000 1.1052
2 0.2000 1.2214 1.2214
0.3000 1.3498
3 0.4000 1.4918 1.4918
0.5000 1.6487
4 0.6000 1.8221 1.8221
0.6750 1.9640
5 0.7500 2.1170 2.1170
0.8250 2.2819
6 0.9000 2.4596 2.4596
0.9500 2.5857
7 1.0000 2.7183 2.7183
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EO01BEF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

EOIBEF computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of
data points.

2. Specification
SUBROUTINE EQO1BEF (N, X, F, D, IFAIL)

INTEGER N, IFAIL
real X(N), F(N), D(N)

3. Description

This routine estimates first derivatives at the set of data points (x,f,), for r = 1,2,...,n, which
determine a piecewise cubic Hermite interpolant to the data, that preserves monotonicity over
ranges where the data points are monotonic. If the data points are only piecewise monotonic, the
interpolant will have an extremum at each point where monotonicity switches direction. The
estimates of the derivatives are computed by a formula due to Brodlie, which is described in
Fritsch and Butland [1], with suitable changes at the boundary points.

The routine is derived from routine PCHIM in Fritsch [2].

Values of the computed interpolant, and of its first derivative and definite integral, can
subsequently be computed by calling EO1BFF, EO1BGF and E01BHF, as described in Section 8.

4. References

[1] FRITSCH, F.N. and BUTLAND, J.
A method for constructing local monotone piecewise cubic interpolants.
SIAM J. Sci. Stat. Comput., 5, pp. 300-304, 1984,

(2] FRITSCH, F.N.
PCHIP Final Specifications.
Lawrence Livermore National Laboratory report UCID-30194, August 1982.

S.  Parameters

I: N - INTEGER. Input
On entry: n, the number of data points.
Constraint: N 2 2.

2:  X(N) — real array. Input
On entry: X(r) must be set to x,, the rth value of the independent variable (abscissa), for
r=12,..n.

Constraint: X(r) < X(r+1).

3:  F(N) - real array. Input
Onentry: F(r) must be set to f,, the rth value of the dependent variable (ordinate), for
r=12,..,n.

4: D(N) - real array. Output

On exit: estimates of derivatives at the data points. D(r) contains the derivative at X(r).
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5:

9.1.

Page 2

IFAIL — INTEGER. Input! Output

Onentry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

Onexit: IFAIL = O unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = O or —1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL = 1
On entry, N < 2.
IFAIL = 2

The values of X(r), for r = 1,2,..,N, are not in strictly increasing order.

Accuracy
The computational errors in the array D should be negligible in most practical situations.

Further Comments
The time taken by the routine is approximately proportional to n.

The values of the computed interpolant at the points PX (i), fori = 1,2,...,M, may be obtained in
the real array PF, of length at least M, by the call:

CALL EO1BFF(N,X,F,D,M, PX,PF, IFAIL)

where N, X and F are the input parameters to EO1BEF and D is the output parameter from
EO1BEF.

The values of the computed interpolant at the points PX (i), for i = 1,2,...,M, together with its
first derivatives, may be obtained in the real arrays PF and PD, both of length at least M, by the
call:

CALL E01BGF (N, X,F,D,M, PX,PF,PD, IFAIL)
where N, X, F and D are as described above.

The value of the definite integral of the interpolant over the interval A to B can be obtained in the
real variable PINT by the call:

CALL EO1BHF (N,X,F,D,A,B,PINT, IFAIL)
where N, X, F and D are as described above.

Example

This example program reads in a set of data points, calls EOIBEF to compute a piecewise
monotonic interpolant, and then calls EO1BFF to evaluate the interpolant at equally spaced
points.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* EO1BEF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER MMAX, NMAX
PARAMETER (MMAX=50, NMAX=50)
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Local Scalars .
STEP
I, IFAIL, M, N, R

EO1BEF

D(NMAX), F(NMAX), PF(MMAX), PX(MMAX), X(NMAX)

EO1BEF, EO1BFF

real
INTEGER

* .. Local Arrays ..
real

* External Subroutines ..
EXTERNAL

* .. Intrinsic Functions ..
INTRINSIC

WRI

20

40

60

END

TE (NOUT, *)

DO 20 R =1

MIN

Executable Statements ..

"EO1BEF Example Program Results’

* Skip heading in data file
READ (NIN, *)
READ (NIN,*) N
IF (N.GT.0 .AND. N.LE.NMAX) THEN

s N

READ (NIN,*) X(R), F(R)

CONTINUE
IFAIL = O

CALL EO1BEF(N,X,F,D,IFAIL)

READ (NIN, *

) M

IF (M.GT.0 .AND. M.LE.MMAX) THEN
Compute M equally spaced points from X(1l) to X(N).
STEP = (X(N)-X(1))/(M-1)

DO 40 I
PX(I)

CONTINUE

IFAIL =

=1,

M

= MIN(X(1)+(I-1)*STEP,X(N))

0

CALL EO1BFF(N,X,F,D,M,PX,PF,IFAIL)

WRITE (NOUT, *)
WRITE (NOUT,=*) ' Interpolated’
WRITE (NOUT,*) ' Abscissa Value’

DO 60 I

=1,

M

WRITE (NOUT,99999) PX(I), PF(I)

CONTINUE
END IF
IF

STOP

*

99999 FORMAT (1X,F13.4,2X,F13.4)

END

9.2. Program Data
EO1BEF Example Program Data

9
7.99
8.09
8.19
8.70
9.20

10.00
12.00
15.00
20.00
11

[NP1692/14]

0.00000E+0
0.27643E-4
0.43750E-1
0.16918E+0
0.46943E+0
0.94374E+0
0.99864E+0
0.99992E+0
0.99999E+0

N,

the number of data points

X(R), F(R), independent and dependent variable

End of data points

M,

the number of evaluation points
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9.3. Program Results

EQO1lBEF Example Program Results

0.8

0.6

0.4

0.2}

Interpolated
Value

PFRPRPHOOOOOOO

.0000
.4640
.9645
.9965
.9992

T8

EO1 — Interpolation
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EO01BFF - NAG Fortran Library Routine Document

Note: before uamg thls routine, please read the Users’ Note for your |mplementat|on to check the interpretation of bold italicised terms and
other imp dent details. The routine name may be precision-dependent.

L d

1. Purpose
EO1BFF evaluates a piecewise cubic Hermite interpolant at a set of points.

2. Specification
SUBROUTINE EO1BFF (N, X, F, D, M, PX, PF, IFAIL)

INTEGER N, M, IFAIL
real X(N), F(N), D(N), PX(M), PF(M)

3. Description

This routine evaluates a piecewise cubic Hermite interpolant, as computed by EO1BEF, at the
points PX (i), fori = 1,2,...,m. If any point lies outside the interval from X (1) to X(N), a value
is extrapolated from the nearest extreme cubic, and a warning is returned.

The routine is derived from routine PCHFE in Fritsch [1].

4. References

[1] FRITSCH, F.N.
PCHIP Final Specifications.
Lawrence Livermore National Laboratory report UCID-30194, August 1982.

5. Parameters

1: N - INTEGER. Input

2:  X(N) - real array. Input

3:  F(N) - real array. Input

4:  D(N) - real array. Inpur
Onentry: N, X, F and D must be unchanged from the previous call of EO1BEF.

5: M - INTEGER. Input
On entry: m, the number of points at which the interpolant is to be evaluated.
Constraint: M 2 1.

6: PX(M) — real array. Input
On entry: the m values of x at which the interpolant is to be evaluated.

7:  PF(M) - real array. Output
Onexit: PF(i) contains the value of the interpolant evaluated at the point PX(i), for
i = 1,2,....m.

8: IFAIL — INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is O.

Onexit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).
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IFAIL =1
On entry, N < 2.
IFAIL = 2

The values of X(r), for r = 1,2,...,N, are not in strictly increasing order.

IFAIL = 3
On entry, M < 1.

IFAIL = 4

At least one of the points PX(i), for i = 1,2,...,M, lies outside the interval [X(1),X(N)],
and extrapolation was performed at all such points. Values computed at such points may be
very unreliable.

7. Accuracy
The computational errors in the array PF should be negligible in most practical situations.

8. Further Comments

The time taken by the routine is approximately proportional to the number of evaluation points,
m. The evaluation will be most efficient if the elements of PX are in non-decreasing order (or,
more generally, if they are grouped in increasing order of the intervals [X(r—1),X(r)]). A single
call of EO1BFF with m > 1 is more efficient than several calls with m = 1.

9. Example
This example program reads in values of N, X, F and D, and then calls EO1BFF to evaluate the
interpolant at equally spaced points.

9.1. Program Text
Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read

the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* EO1BFF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER MMAX, NMAX
PARAMETER (MMAX=21, NMAX=50)
* .. Local Scalars ..
real STEP
INTEGER I, IFAIL, M, N, R
* .. Local Arrays .. '
real D(NMAX), F(NMAX), PF(MMAX), PX(MMAX), X(NMAX)
* .. External Subroutines
EXTERNAL EO1BFF
* .. Intrinsic Functions
INTRINSIC MIN
* .. Executable Statements ..
WRITE (NOUT,*) ’'EO1BFF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*) N
IF (N.GT.0 .AND. N.LE.NMAX) THEN
DO 20 R =1, N
READ (NIN,*) X(R), F(R), D(R)
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20 CONTINUE
READ (NIN,*) M

EO01BFF

IF (M.GT.0 .AND. M.LE.MMAX) THEN
* Compute M equally spaced points from X(1) to X(N).

STEP =

DO 40 I =

PX(I) =
40 CONTINUE
IFAIL = 0

1, M

(X(N)-X(1))/(M-1)

MIN(X(1)+(I-1)*STEP,X(N))

CALL EO1BFF(N,X,F,D,M,PX,PF, IFAIL)

WRITE (NOUT, *)
WRITE (NOUT, *)
WRITE (NOUT,x*) ’
DO 60 I =1, M

WRITE (NOUT,99999) PX(I),

60 CONTINUE
END IF
END IF
STOP
*
99999 FORMAT (1X,3F15.4)
END

9.2. Program Data

EO1BFF Example Program Data
9
7.990 0.00000E+0 0.00000E+0
8.090 0.27643E-4 5.52510E-4
8.190 0.43749E-1 0.33587E+0
8.700 0.16918E+0 0.34944E+0
9.200 0.46943E+0 0.59696E+0
10.00 0.94374E+0 6.03260E-2
12.00 0.99864E+0 8.98335E-4
15.00 0.99992E+0 2.93954E-5
20.00 0.99999E+0 0.00000E+0
11

9.3. Program Results
EO1BFF Example Program Results

Interpolated

Abscissa Value
7.9900 0.0000
9.1910 0.4640
10.3920 0.9645
11.5930 0.9965
12.7940 0.9992
13.9950 0.9998
15.1960 0.9999
16.3970 1.0000
17.5980 1.0000
18.7990 1.0000
20.0000 1.0000

Interpolated’

Abscissa Value’

PF(I)

N, the number of data points
X(R), F(R), D(R)

End of data points
M, the number of evaluation points
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EO01BGF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

RN W
*t e

Purpose
EOQ1BGF evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points.
Specification
SUBROUTINE EO1BGF (N, X, F, D, M, PX, PF, PD, IFAIL)
INTEGER N, M, IFAIL
real X(N), F(N), D(N), PX(M), PF(M), PD(M)
Description

This routine evaluates a piecewise cubic Hermite interpolant, as computed by EO1BEF, at the
points PX (i), for i = 1,2,...,m. The first derivatives at the points are also computed. If any point
lies outside the interval from X(1) to X(N), values of the interpolant and its derivative are
extrapolated from the nearest extreme cubic, and a warning is returned.

If values of the interpolant only, and not of its derivative, are required, EO1BFF should be used.
The routine is derived from routine PCHFD in Fritsch [1].

References

[1] FRITSCH, F.N.
PCHIP Final Specifications.
Lawrence Livermore National Laboratory report UCID-30194, August 1982.

Parameters

N — INTEGER. Input
X(N) - real array. Input
F(N) — real array. Input
D(N) - real array. Input

Onentry: N, X, F and D must be unchanged from the previous call of EO1BEF.

M - INTEGER. Input
On entry: m, the number of points at which the interpolant is to be evaluated.
Constraint: M 2 1.

PX (M) - real array. Input
On entry: the m values of x at which the interpolant is to be evaluated.

PF(M) - real array. Output
Onexit: PF(i) contains the value of the interpolant evaluated at the point PX(i), for
i=12..m.

PD(M) - real array. Output

On exit: PD(i) contains the first derivative of the interpolant evaluated at the point PX(i),
fori = 1,2,..m.

IFAIL — INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

[NP1692/14) Page |



EO01BGF EOI — Interpolation

6. Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL =1
On entry, N < 2.

IFAIL = 2
The values of X(r), for r = 1,2,...,N, are not in strictly increasing order.

IFAIL = 3
Onentry, M < 1.

IFAIL = 4

At least one of the points PX(i), for i = 1,2,...,M, lies outside the interval [X(1),X(N)],
and extrapolation was performed at all such points. Values computed at these points may be
very unreliable.

7. Accuracy

The computational errors in the arrays PF and PD should be negligible in most practical
situations.

8. Further Comments

The time taken by the routine is approximately proportional to the number of evaluation points,
m. The evaluation will be most efficient if the elements of PX are in non-decreasing order (or,
more generally, if they are grouped in increasing order of the intervals [X(r—1),X(r)]). A single
call of EO1BGF with m > 1 is more efficient than several calls with m = 1.

9. Example

This example program reads in values of N, X, F and D, and calls EO1BGF to compute the values
of the interpolant and its derivative at equally spaced points.

9.1. Program Text
Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read

the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* EO1BGF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER MMAX, NMAX
PARAMETER (MMAX=21, NMAX=50)
* .. Local Scalars ..
real STEP
INTEGER I, IFAIL, M, N, R
* .. Local Arrays
real D(NMAX), F(NMAX), PD(MMAX), PF(MMAX), PX(MMAX),
+ X (NMAX)
* .. External Subroutines
EXTERNAL EO1BGF
* .. Intrinsic Functions
INTRINSIC MIN
* .. Executable Statements

WRITE (NOUT,*) ’‘EQ1BGF Example Program Results’
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* Skip heading in data file
READ (NIN, *)
READ (NIN,*) N
IF (N.GT.0 .AND. N.LE.NMAX) THEN
DO 20 R =1, N
READ (NIN,*) X(R), F(R), D(R)
20 CONTINUE
READ (NIN,*) M
IF (M.GT.0 .AND. M.LE.MMAX) THEN

* Compute M equally spaced points from X(1l) to X(N).

STEP = (X(N)-X(1))/(M-1)
DO 40 I =1, M
PX(I) = MIN(X(1)+(I-1)*STEP,X(N))
40 CONTINUE
IFAIL = 0

CALL EO1BGF(N,X,F,D,M,PX, PF,PD, IFAIL)

WRITE (NOUT, *)
WRITE (NOUT, *)

+ ’ Interpolated Interpolated’

WRITE (NOUT, *)
+ ’ Abscissa Value
DO 60 I =1, M

Derivative’

WRITE (NOUT,99999) PX(I), PF(I), PD(I)

60 CONTINUE
END IF
END IF
STOP
*
99999 FORMAT (1X,2F15.4,1P,el5.3)
END

9.2. Program Data
EO1BGF Example Program Data

E01BGF

9 N, the number of data points
7.990 0.00000E+0 O0.00000E+0 X(R), F(R), D(R)
8.090 0.27643E-4 5.52510E-4
8.190 0.43749E-1 0.33587E+0
8.700 0.16918E+0 0.34944E+0
9.200 0.46943E+0 0.59696E+0
10.00 0.94374E+0 6.03260E-2
12.00 0.99864E+0 8.98335E-4
15.00 0.99992E+0 2.93954E-5
20.00 0.99999E+0 0.00000E+0 End of data points
11 M, the number of evaluation points

9.3. Program Results
EO1BGF Example Program Results

Interpolated Interpolated

Abscissa Value Derivative
7.9900 0.0000 0.000E+00
9.1910 0.4640 6.060E-01

10.3920 0.9645 4.569E-02
11.5930 0.9965 9.917E-03
12.7940 0.9992 6.249E-04
13.9950 0.9998 2.708E-04
15.1960 0.9999 2.809E-05
16.3970 1.0000 2.034E-05
17.5980 1.0000 1.308E-05
18.7990 1.0000 6.297E-06
20.0000 1.0000 -9.529E-22
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EO1BHF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

RN W
N

Purpose

EQ1BHF evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval
[a,b].

Specification
SUBROUTINE EO1BHF (N, X, F, D, A, B, PINT, IFAIL)
INTEGER N, IFAIL
real X(N), F(N), D(N), A, B, PINT
Description

This routine evaluates the definite integral of a piecewise cubic Hermite interpolant, as computed
by EO1BEEF, over the interval [a,b].

If either a or b lies outside the interval from X(1) to X(N) computation of the integral involves
extrapolation and a warning is returned.

The routine is derived from routine PCHIA in Fritsch [1].

References

[1] FRITSCH, F.N.
PCHIP Final Specifications.
Lawrence Livermore National Laboratory report UCID-30194, August 1982.

Parameters

N - INTEGER. Input
X(N) — real array. Input
F(N) - real array. Input
D(N) — real array. Input

Onentry: N, X, F and D must be unchanged from the previous call of EO1BEF.

A —real. Input
B - real. Input

On entry:. the interval [a,b] over which integration is to be performed.

PINT - real. Output
On exit: the value of the definite integral of the interpolant over the interval [a,b].

IFAIL — INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).
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9.1.

Page 2

IFAIL = 1
On entry, N < 2.

IFAIL = 2
The values of X(r), for r = 1,2,...,N, are not in strictly increasing order.

IFAIL = 3
On entry, at least one of A or B lies outside the interval [X(1),X(N)], and extrapolation
was performed to compute the integral. The value returned is therefore unreliable.
Accuracy

The computational error in the value returned for PINT should be negligible in most practical
situations.

Further Comments

The time taken by the routine is approximately proportional to the number of data points
included within the interval [a,b].

Example

This example program reads in values of N, X, F and D. It then reads in pairs of values for A and
B, and evaluates the definite integral of the interpolant over the interval [A,B] until end-of-file is
reached.

Program Text
Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read

the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* EO1BHF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX
PARAMETER (NMAX=50)
* .. Local Scalars ..
real A, B, PINT
INTEGER IFAIL, N, R
* .. Local Arrays
real D(NMAX), F(NMAX), X(NMAX)
* .. External Subroutines
EXTERNAL EQO1BHF
* .. Executable Statements .
WRITE (NOUT,*) ’'EQO1BHF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN, *) N
IF (N.GT.0 .AND. N.LE.NMAX) THEN
DO 20 R =1, N
READ (NIN,*) X(R), F(R), D(R)
20 CONTINUE
WRITE (NOUT, *)
WRITE (NOUT, *) ' Integral’
WRITE (NOUT,*) ' A B over (A,B)’
* Read A, B pairs until end of file and compute
* definite integrals
40 READ (NIN,*,END=60) A, B
IFAIL = 0
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END IF

CALL EO1BHF(N,X,F,D,A,B,PINT, IFAIL)

WRITE (NOUT,99999) A, B, PINT
GO TO 40

60 STOP

*

99999 FORMAT (1X,3F13.4)

END

9.2. Program Data

EO1BHF Example Program Data

9

.990
.090
.190
.700
.200
10.00
12.00
15.00
20.00
7.99
10.0
12.0
15.0

O 00 00 0 ~J

[elololoNoloNeNoNa)

.00000E+0
.27643E-4
.43749E-1
.16918E+0
.46943E+0
.94374E+0
.99864E+0
.99992E+0
.99999E+0

20.0
12.0
10.0
15.0

9.3. Program Results
EO1BHF Example Program Results

7.9900

10.0000
12.0000
15.0000

.00000E+0
.52510E-4
.33587E+0
.34944E+0
.59696E+0
.03260E-2
.98335E-4
.93954E-5
.00000E+0

ONOOHNODOO Lo

N, the number of data points
X(R), F(R), D(R)

A, B pairs until end of file

Integral

B over (A,B)
20.0000 10.7648
12.0000 1.9622
10.0000 -1.9622
15.0000 0.0000

EO01BHF
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EOIDAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.  Purpose

EO1DAF computes a bicubic spline interpolating surface through a set of data values, given on a
rectangular grid in the x-y plane.

2. Specification
SUBROUTINE EO1DAF (MX, MY, X, Y, F, PX, PY, LAMDA, MU, C, WRK, IFAIL)

INTEGER MX, MY, PX, PY, IFAIL
real X(MX), Y(MY), F(MX#*MY), LAMDA (MX+4), MU(MX+4), C(MX*MY),
1 WRK ( (MX+6)* (MY+6) )

3. Description

This routine determines a bicubic spline interpolant to the set of data points (xgy,f,,), for
q=12,.m;r = 12,..m, The spline is given in the B-spline representation

() = 3 Y ¢, M (N, (),

i=1 =1
such that
S(xq,y,.) = fq,r ’
where M;(x) and N ;(») denote normalised cubic B-splines, the former defined on the knots 4,
to A,,, and the latter on the knots H; to W;,,, and the c,; are the spline coefficients. These knots,

as well as the coefficients, are determined by the routine, which is derived from the routine
B2IRE in Anthony er al. [1]. The method used is described in Section 8.2.

For further information on splines, see Hayes and Halliday [4] for bicubic splines and de Boor
[3] for normalised B-splines.

Values of the computed spline can subsequently be obtained by calling EO2DEF or E02DFF as
described in Section 8.3.

4. References
[1] ANTHONY, G.T., COX, M.G. and HAYES, J.G.
DASL - Data Approximation Subroutine Library, National Physical Laboratory, 1982,

[2] COX, M.G.
An algorithm for spline interpolation.
J. Inst. Maths. Applics., 15, pp. 95-108, 1975.

[3] DE BOOR, C.
On Calculating with B-splines.
J. Approx. Theory, 6, pp. 50-62, 1972.

[4] HAYES, J.G. and HALLIDAY, J.
The Least-squares Fitting of Cubic Spline Surfaces to General Data Sets.
J. Inst. Maths. Applics., 14, pp. 89-103, 1974.

5. Parameters

MX - INTEGER. Input
MY - INTEGER. Input

On entry: MX and MY must specify m, and m, respectively, the number of points along the
x and y axis that define the rectangular grid.

Constraint: MX 2 4 and MY 2 4.
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10:

11:

12:

X(MX) — real array. Input

Y(MY) — real array. Input
Onentry: X(gq) and Y(r) must contain x,, for g = 1,2,.,m,, and y,, forr = 1,2,.m,
respectively.

Constraints: X(q) < X(g+1), forg = 1,2,...m -1,
Y(r) < Y(r+l),forr = 12,..,m —1.

F(MX*MY) — real array. Input
On entry: F(m,x(g—1)+r) must contain fq,,, forg=12..m;r= 1,2,...,my.

PX — INTEGER. Output

PY - INTEGER. Output

On exir: PX and PY contain m, + 4and m, + 4, the total number of knots of the computed
spline with respect to the x and y variables, respectively.

LAMDA (MX+4) — real array. Output
MU (MY+4) - real array. Output

On exit: LAMDA contains the complete set of knots A, associated with the x variable, i.e.
the interior knots LAMDA(5), LAMDA(6),...,LAMDA (PX~-4), as well as the additional
knots LAMDA(1) = LAMDA(2) = LAMDA(3) = LAMDA(4) = X(1) and
LAMDA (PX-3) = LAMDA(PX-2) = LAMDA(PX~-1) = LAMDA(PX) = X(MX)
needed for the B-spline representation. MU contains the corresponding complete set of
knots 4, associated with the y variable.

C(MX*MY) — real array. Output
On exit: the coefficients of the spline interpolant. C(m X (i—1)+j) contains the coefficient
c;; described in Section 3.

WRK ((MX+6)*(MY+6)) — real array. Workspace

IFAIL — INTEGER. Input! Output

On entry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is O.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL = 1
On entry, MX < 4,
or MY < 4.
IFAIL = 2
On entry, either the values in the X array or the values in the Y array are not in increasing
order.
IFAIL = 3

A system of linear equations defining the B-spline coefficients was singular; the problem is
too ill-conditioned to permit solution.
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7. Accuracy
The main sources of rounding errors are in steps (2), (3), (6) and (7) of the algorithm
described in Section 8.2. It can be shown (Cox [2]) that the matrix A, formed in step (2) has
elements differing relatively from their true values by at most a small multiple of 3¢, where € is
the machine precision. A is ‘totally positive’, and a linear system with such a coefficient matrix
can be solved quite safely by elimination without pivoting. Similar comments apply to steps (6)
and (7). Thus the complete process is numerically stable.
8. Further Comments
8.1. Timing
The time taken by this routine is approximately proportional to m.m,.
8.2. Outline of method used
The process of computing the spline consists of the following steps:
(1) choice of the interior x-knots A5, A¢,...,A,, as A, = x,_,, fori = 56,..m,,
(2) formation of the system
AE=F,
where A, is a band matrix of order m, and bandwidth 4, containing in its gth row the values
atx, of the B-splines in x, F' is the m by m,, rectangular matrix of values f, ,, and E denotes
an m, by m, rectangular matrix of intermediate coefficients,
(3) use of Gaussian elimination to reduce this system to band triangular form,
(4) solution of this triangular system for E,
(5) choice of the interior y knots i, Heswbl 3S [ =Y, 5, fori = 56,..m,
(6) formation of the system
ACT = ET,
where A, is the counterpart of A, for the y variable, and C denotes the m, by m,, rectangular
matrix of values of Cij»
(7) use of Gaussian elimination to reduce this system to band triangular form,
(8) solution of this triangular system for CT and hence C.
For computational convenience, steps (2) and (3), and likewise steps (6) and (7), are
combined so that the formation of A, and A, and the reductions to triangular form are carried out
one row at a time.
8.3. Evaluation of Computed Spline

The values of the computed spline at the points (TX(r),TY(r)), for r = 1,2,...,N, may be
obtained in the real array FF, of length at least N, by the following call:

IFAIL = 0

CALL EO2DEF (N, PX,PY,TX,TY,LAMDA,MU,C, FF, WRK, IWRK, IFAIL)
where PX, PY, LAMDA, MU and C are the output parameters of EOIDAF, WRK is a real
workspace array of length at least PY—4, and IWRK is an integer workspace array of length at
least PY—4.

To evaluate the computed spline on an NX by NY rectangular grid of points in the x-y plane,
which is defined by the x co-ordinates stored in TX(g), for ¢ = 1,2,...,NX, and the y
co-ordinates stored in TY (r), for r = 1,2,...,NY, returning the results in the real array FG which
is of length at least NXxNY, the following call may be used:
IFAIL = 0
CALL EO2DFF (NX,NY,PX,PY, TX,TY, LAMDA,MU, C, FG, WRK, LWRK,
* IWRK, LIWRK, IFAIL)

where PX, PY, LAMDA, MU and C are the output parameters of EOIDAF, WRK is a real
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workspace array of length at least LWRK = min(NWRK1,NWRK2),
NWRK1 = NXx4 + PX, NWRK2 = NYx4 + PY, and IWRK is an integer workspace array
of length at least LIWRK = NY + PY — 4 if NWRK1 > NWRK2, or NX + PX - 4
otherwise. The result of the spline evaluated at grid point (g,r) is returned in element
(NYx(g—1)+r) of the array FG.

Example

This program reads in values of m,, x, forg = 1,2,..m,,m andy, forr = 1,2,...,m, followed
by values of the ordinates f, , defined at the grid points (x,,y,). It then calls EOIDAF to compute
a bicubic spline interpolant of the data values, and prints the values of the knots and B-spline
coefficients. Finally it evaluates the spline at a small sample of points on a rectangular grid.

Program Text

Note: the listing of the example program presented below uses bold italicised tcrms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* EQO1DAF Example Program Text
* Mark 14 Release. NAG Copyright 1989.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER MXMAX, MYMAX
PARAMETER (MXMAX=20, MYMAX=MXMAX )
INTEGER LIWRK, LWRK
PARAMETER ( LIWRK=MXMAX+2* (MXMAX~3) * (MYMAX-3) , LWRK=(MXMAX+6)
+ * (MYMAX+6) )
* .. Local Scalars ..
real STEP, XHI, XLO, YHI, YLO
INTEGER I, IFAIL, J, MX, MY, NX, NY, PX, PY
* .. Local Arrays ..
real C(MXMAX*MYMAX), F(MXMAX*MYMAX), FG(MXMAX*MYMAX),
+ LAMDA (MXMAX+4), MU(MYMAX+4), TX(MXMAX),
+ TY(MYMAX), WRK(LWRK), X(MXMAX), Y(MYMAX)
INTEGER IWRK(LIWRK)
CHARACTER~*10 CLABS (MYMAX), RLABS(MXMAX)
* .. External Subroutines ..
EXTERNAL EO1DAF, EO2DFF, X04CBF
* .. Intrinsic Functions
INTRINSIC MAX, MIN
* .. Executable Statements ..
WRITE (NOUT,*) ’EOl1DAF Example Program Results’
* Skip heading in data file
READ (NIN, *)
* Read the number of X points, MX, and the values of the
* X co-ordinates.

READ (NIN, *) MX
READ (NIN,*) (X(I),I=1,MX)
* Read the number of Y points, MY, and the values of the
* Y co-ordinates.
READ (NIN,*) MY
READ (NIN,*) (Y(I),I=1,MY)
* Read the function values at the grid points.
DO 20 J =1, MY
READ (NIN,*) (F(MY*(I-1)+J),I=1,MX)
20 CONTINUE
IFAIL = 0

* Generate the (X,Y,F) interpolating bicubic B-spline.
CALL EO1DAF (MX,MY,X,Y,F,PX,PY, LAMDA, MU, C,WRK, IFAIL)
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+

EO1DAF

Print the knot sets, LAMDA and MU.

WRITE
WRITE
14
DO 40

IF

(NOUT, *)
(NOUT, *)
I Knot LAMDA(I) J Knot MU(J)’
J = 4, MAX(PX,PY) - 3
(J.LE.PX-3 .AND. J.LE.PY-3) THEN

WRITE (NOUT,99997) J, LAMDA(J), J, MU(J)
ELSE IF (J.LE.PX-3) THEN
WRITE (NOUT,99997) J, LAMDA(J)

ELS

E IF (J.LE.PY-3) THEN

WRITE (NOUT, 99996) J, MU(J)

END

IF

40 CONTINUE

60

80

*

99999
99998
99997
99996

Print
WRITE
WRITE
WRITE
WRITE

the spline coefficients.

(NOUT, *)

(NOUT, *) "The B-Spline coefficients:’
(NOUT, 99999) (C(I),I=1,MX*MY)
(NOUT, *)

Evaluate the spline on a regular rectangular grid at NX*NY

points
READ (
READ (
IF (NX
STE
DO

CON
STE
DO

CON

Eva
CAL

Pri
CAL

END IF
STOP

FORMAT
FORMAT
FORMAT
FORMAT
END

9.2. Program Data

EO1DAF
7
1.00
6
0.00
1.00
1.10
1.40
1.70
1.90
2.00

[NP1692/14)

over the domain (XLO to XHI) x (YLO to YHI).
NIN, *) NX, XLO, XHI
NIN, *) NY, YLO, YHI
.LE .MXMAX .AND. NY.LE.MYMAX) THEN
P = (XHI-XLO)/(NX-1)
60 I = 1, NX
Generate NX equispaced X co-ordinates.
TX(I) = MIN(XLO+(I-1)*STEP,XHI)
Generate X axis labels for printing results.
WRITE (CLABS(I),99998) TX(I)
TINUE
P = (YHI-YLO)/(NY-1)
80 I =1, NY
TY(I) = MIN(YLO+(I-1)*STEP,YHI)
WRITE (RLABS(I),99998) TY(I)
TINUE

luate the spline.
L E02DFF (NX,NY,PX,PY, TX,TY, LAMDA, MU, C, FG, WRK, LWRK, IWRK,
LIWRK, IFAIL)

nt the results.
L. X0ACBF(’General’,’X’,NY,NX,FG,NY,'F8.3",
’Spline evaluated on a regular mesh (X across, Y down):’
,’'Character’,RLABS, ’'Character’ ,CLABS, 80,0, IFAIL)

(1X,8F9.4)

(F5.2)
(1X,116,F12.4,1I11,F12.4)
(1X,139,F12.4)

Example Program Data

1.10

MX
1.30 1.50 1.60 1.80 2.00 X(1) .. X(MX)
MY
0.40 0.70 0.90 1.00 Y(1) .. Y(MY)
1.69 2.25 2.56 3.24 .00 (F(MY*(I-1)+J),I=1..MX),J=1..MY

2.09 2.65 2.96 3.64
2.39 2.95 3.26 3.94
2.59 3.15 3.46 4.14 4.90
2.69 3.25 3.56 4.24 5.00

4
1.79 2.35 2.66 3.34 4.10

4

4

NX XLO XHI
NY YLO YHI
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9.3. Program Results

EO1DAF Example Program Results

I Knot LAMDA(I) J Knot MU(J)
4 1.0000 4 0.0000
5 1.3000 5 0.4000
6 1.5000 6 0.7000
7 1.6000 7 1.0000
8 2.0000
The B-Spline coefficients:
1.0000 1.1333 1.3667 1.7000 1.9000 2.0000
1.5667 1.9000 2.1000 2.2000 1.5833 1.7167
2.4833 2.5833 2.1433 2.2767 2.5100 2.8433
2.8667 3.0000 3.2333 3.5667 3.7667 3.8667
3.8333 4.1667 4.3667 4.4667 4.0000 4.1333
4.9000 5.0000
Spline evaluated on a regular mesh (X across, Y down):
1.00 1.20 1.40 1.60 1.80 2.00
0.00 1.000 1.440 1.960 2.560 3.240 4.000
0.20 1.200 1.640 2.160 2.760 3.440 4.200
0.40 1.400 1.840 2.360 2.960 3.640 4.400
0.60 1.600 2.040 2.560 3.160 3.840 4.600
0.80 1.800 2.240 2.760 3.360 4.040 4.800
1.00 2.000 2.440 2.960 3.560 4.240 5.000

EOI — Interpolation

o> WwwRE R

.2000
.9500
.0433
.4667
.3667

1.3333
2.2833
3.1433
3.6000
4.7000

Page 6 (last)
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EO1RAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.  Purpose

EO1RAF produces, from a set of function values and corresponding abscissae, the coefficients of
an interpolating rational function expressed in continued fraction form.

2. Specification
SUBROUTINE EO1RAF (N, X, F, M, A, U, IW, IFAIL)

INTEGER N, M, IW(N), IFAIL
real X(N), F(N), A(N), U(N)

3. Description

EO1RAF produces the parameters of a rational function R (x) which assumes prescribed values f;
at prescribed values x; of the independent variable x, for i = 1,2,..,n. More specifically,
EO1RAF determines the parameters a;, forj = 1,2,..mand u;,j = 1,2,...,m—1, in the continued

fraction

R(x) = a, + R, (x) ()
where

R.(x) = a’"l"*jr(;j_"l’z;’;‘), for i = mm=1,...2,
and

R,(x) =0,

such that R(x,;) = f;, for i = 1,2,...,n. The value of m in (1) is determined by the routine;
normally m = n. The values of u; form a re-ordered subset of the values of x; and their ordering
is designed to ensure that a representation of the form (1) is determined whenever one exists.

The subsequent evaluation of (1) for given values of x can be carried out using EOIRBF.

The computational method employed in EOIRAF is the modification of the Thacher-Tukey
algorithm described in Graves-Morris and Hopkins [1].

4, References

[1] GRAVES-MORRIS, P.R. and HOPKINS, T.R.
Reliable Rational Interpolation. '
Numer. Math., 36, pp. 111-128, 1981.

5. Parameters
N — INTEGER. Input
On entry: n, the number of data points.
Constraint: N > 0.

2: X(N) — real array. Input
On entry: X (i) must be set to the value of the ith data abscissa, x;, for i = 1,2,...,n.
Constraint. the X (i) must be distinct.

3:  F(N) — real array. Input
Onentry: F(i) must be set to the value of the data ordinate, f;, corresponding to x;, for
i=12,..,n
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Page 2

M - INTEGER. Output
On exit: m, the number of terms in the continued fraction representation of R(x).

A(N) — real array. Output

On exit: the value of the parameter a; in R(x), for j = 1,2,..,m. The remaining elements of
A, if any, are set to zero.

U(N) — real array. Output

On exit: the value of the parameter u; in R(x), for j = 1,2,..,m—1. The u; are a permuted
subset of the elements of X. The remaining n — m + 1 locations contain a permutation of
the remaining x;, which can be ignored.

IW(N) — INTEGER array. Workspace

IFAIL — INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

Onexit: IFAIL = O unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:
IFAIL = 1

On entry, N < 0.

IFAIL = 2

At least one pair of the values X (i) are equal (or so nearly so that a subsequent division
will inevitably cause overflow).

IFAIL = 3
A continued fraction of the required form does not exist.

Accuracy

Usually, it is not the accuracy of the coefficients produced by this routine which is of prime
interest, but rather the accuracy of the value of R(x) that is produced by the associated routine
EO1RBF when subsequently it evaluates the continued fraction (1) for a given value of x. This
final accuracy will depend mainly on the nature of the interpolation being performed. If
interpolation of a ‘well-behaved smooth’ function is attempted (and provided the data adequately
represents the function), high accuracy will normally ensue, but, if the function is not so
‘smooth’ or extrapolation is being attempted, high accuracy is much less likely. Indeed, in
extreme cases, results can be highly inaccurate.

There is no built-in test of accuracy but several courses are open to the user to prevent the
production or the acceptance of inaccurate results.

(1) If the origin of a variable is well outside the range of its data values, the origin should be
shifted to correct this; and, if the new data values are still excessively large or small,
scaling to make the largest value of the order of unity is recommended. Thus,
normalisation to the range —1.0 to +1.0 is ideal. This applies particularly to the
independent variable; for the dependent variable, the removal of leading figures which are
common to all the data values will usually suffice.

(2) To check the effect of rounding errors engendered in the routines themselves, EO1RAF
should be re-entered with x, interchanged with x; and f; with f;, (i#1). This will produce
a completely different vector a and a re-ordered vector u, but any change in the value of
R(x) subsequently produced by EOIRBF will be due solely to rounding error.
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9.1.

(3) Even if the data consist of calculated values of a formal mathematical function, it is only
in exceptional circumstances that bounds for the interpolation error (the difference
between the true value of the function underlying the data and the value which would be
produced by the two routines if exact arithmetic were used) can be derived that are
sufficiently precise to be of practical use. Consequently, the user is recommended to rely
on comparison checks: if extra data points are available, the calculation may be repeated
with one or more data pairs added or exchanged, or alternatively, one of the original data
pairs may be omitted. If the algorithms are being used for extrapolation, the calculations
should be performed repeatedly with the 2,3,... nearest points until, hopefully, successive
values of R(x) for the given x agree to the required accuracy.

Further Comments
The time taken by the routine is approximately proportional to n>.

The continued fraction (1) when expanded produces a rational function in x, the degree of whose
numerator is either equal to or exceeds by unity that of the denominator. Only if this rather
special form of interpolatory rational function is needed explicitly, would this routine be used
without subsequent entry (or entries) to EO1IRBF.

Example

This example program reads in the abscissae and ordinates of 5 data points and prints the
parameters a; and u; of a rational function which interpolates them.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* EO1RAF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters
INTEGER N
PARAMETER (N=5)
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
* .. Local Scalars ..
INTEGER I, IFAIL, M
* .. Local Arrays ..
real A(N), F(N), U(N), X(N)
INTEGER IW(N)
* .. External Subroutines
EXTERNAL EO1RAF
* .. Executable Statements ..
WRITE (NOUT,*) ’‘EO1lRAF Example Program Results’
* Skip heading in data file

READ (NIN, *)

READ (NIN,*) (X(I),I=1,N)
READ (NIN,*) (F(I),I=1,N)
IFAIL = 0

CALL EOlRAF(N,X,F,M,A,U,IW,IFAIL)

WRITE (NOUT, *)

WRITE (NOUT,*) ’'The values of U(J) are’

WRITE (NOUT,99999) (U(I),I=1,M-1)

WRITE (NOUT, *)

WRITE (NOUT,*) 'The Thiele coefficients A(J) are’
WRITE (NOUT, 99999) (A(I),I=1,M)

STOP

99999 FORMAT (1X,1P,4el2.4,/)
END
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9.2. Program Data
EQ1RAF Example Program Data
0.0 1.0 2.0 3.0 4.0
4.0 2.0 4.0 7.0 10.4
9.3. Program Results

EO1RAF Example Program Results

The values of U(J) are
0.0000E+00 3.0000E+00 1.0000E+00

The Thiele coefficients A(J) are
4.0000E+00 1.0000E+00 7.5000E-01 -1.0000E+00
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EO1RBF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose
EO1RBF evaluates continued fractions of the form produced by EO1RAF.
Specification
SUBROUTINE EO1RBF (M, A, U, X, F, IFAIL)
INTEGER M, IFAIL
real A(M), U(M), X, F
Description

EOIRBF evaluates the continued fraction
R(x) =a, +R,,(x)

where
a, _..,(x—u, ...)
R~ = m—i+2 m—i+l1 : — —1...
((x) T+ R fori = mm-1,...,2,
and
R, (x) =0

for a prescribed value of x. EO1RBF is intended to be used to evaluate the continued fraction
representation (of an interpolatory rational function) produced by EO1RAF.

References

[1] GRAVES-MORRIS, P.R. and HOPKINS, T.R.
Reliable Rational Interpolation.
Numer. Math., 36, pp. 111-128, 1981.

Parameters

M — INTEGER. Input
On entry: m, the number of terms in the continued fraction.
Constraint: M 2 1.

A(M) - real array. Input
On entry: A(j) must be set to the value of the parameter a; in the continued fraction, for
j=12,..m.

U(M) - real array. Input

On entry: U(j) must be set to the value of the parameter u ; in the continued fraction, for
Jj = 12,..m—=1. (The element U(m) is not used).

X —real. Input
On entry: the value of x at which the continued fraction is to be evaluated.

F — real. Output
On exit: the value of the continued fraction corresponding to the value of x.
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IFAIL — INTEGER. Input/ Output

On entry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

Onexit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:
IFAIL =1

The value of X corresponds to a pole of R(x) or is so close that an overflow is likely to
ensue.

Accuracy
See Section 7 of the routine document for EO1RAF.

Further Comments
The time taken by the routine is approximately proportional to m.

Example

This example program reads in the parameters a; and u; of a continued fraction (as determined
by the example for EOIRAF) and evaluates the continued fraction at a point x.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* EO1RBF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters
INTEGER M
PARAMETER (M=4)
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
* .. Local Scalars ..
real F, X
INTEGER I, IFAIL
* .. Local Arrays ..
real A(M), U(M)
* .. External Subroutines
EXTERNAL EQO1RBF
* .. Executable Statements ..
WRITE (NOUT,*) "EO1RBF Example Program Results’
* Skip heading in data file

READ (NIN, )

READ (NIN,*) (A(I),I=1,M)
READ (NIN,*) (U(I),I=1,M-1)
READ (NIN,*) X

WRITE (NOUT, *)

WRITE (NOUT,99999) ’X =’, X
IFAIL = 0

CALL EO1RBF(M,A,U,X,F, IFAIL)

WRITE (NOUT, *)

WRITE (NOUT,99999) 'The value of R(X) is ', F
STOP

99999 FORMAT (1X,A,1P,el2.4)
END
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9.2. Program Data

EO1RBF Example Program Data
4.000 1.000 0.750 -1.000
0.000 3.000 1.000
6.000

9.3. Program Results
EO1RBF Example Program Results
X = 6.0000E+00

The value of R(X) is 1.7714E+01

EO1RBF
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EO01SAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

EO1SAF generates a two-dimensional surface interpolating a set of scattered data points, using
the method of Renka and Cline.

2. Specification
SUBROUTINE EO1SAF (M, X, Y, F, TRIANG, GRADS, IFAIL)

INTEGER M, TRIANG(7*M), IFAIL
real X(M), Y(M), F(M), GRADS(2,M)

3. Description

This routine constructs an interpolating surface F(x,y) through a set of m scattered data points
(x,.y,f,),for r = 1,2,...,m, using a method due to Renka and Cline. In the (x,y) plane, the data
points must be distinct. The constructed surface is continuous and has continuous first
derivatives.

The method involves firstly creating a triangulation with all the (x,y) data points as nodes, the
triangulation being as nearly equiangular as possible (see Cline and Renka [1]). Then gradients
in the x— and y—directions are estimated at node r, for r = 1,2,...,m, as the partial derivatives of
a quadratic function of x and y which interpolates the data value f,, and which fits the data values
at nearby nodes (those within a certain distance chosen by the algorithm) in a weighted
least-squares sense. The weights are chosen such that closer nodes have more influence than
more distant nodes on derivative estimates at node r. The computed partial derivatives, with the
f, values, at the three nodes of each triangle define a piecewise polynomial surface of a certain
form which is the interpolant on that triangle. See Renka and Cline [4] for more detailed
information on the algorithm, a development of that by Lawson [2]. The code is derived from
Renka [3].

The interpolant F(x,y) can subsequently be evaluated at any point (x,y) inside or outside the
domain of the data by a call to EOISBF. Points outside the domain are evaluated by
extrapolation.

4. References

[1] CLINE, AK. and RENKA, R.L.
A Storage-efficient Method for Construction of a Thiessen Triangulation.
Rocky Mountain J. Math., 14, pp. 119-139, 1984.

[2] LAWSON, C.L.
Software for C' Surface Interpolation.
In, ‘Mathematical Software IIT’, Rice, J.R. (ed).
Academic Press, New York, pp. 161-194, 1977.

[3] RENKA, R.L.
Algorithm 624: Triangulation and Interpolation of Arbitrarily Distributed Points in the
Plane.
ACM Trans. Math. Software, 10, pp. 440-442, 1984.

[4] RENKA, R.L. and CLINE, AK.

A Triangle-based C' Interpolation Method.
Rocky Mountain J. Math., 14, pp. 223-237, 1984.
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Parameters

M - INTEGER. Input
On entry: m, the number of data points.
Constraint: M 2 3.

X(M) — real array. Input
Y(M) — real array. Input
F(M) — real array. Input

Onentry: the co-ordinates of the rth data point, for r = 1,2,...,m. The data points are
accepted in any order, but see Section 8.

Constraint: The (x,y) nodes must not all be collinear, and each node must be unique.

TRIANG(7*M) — INTEGER array. Output
On exit: a data structure defining the computed triangulation, in a form suitable for passing
to EO1SBF.

GRADS (2,M) - real array. Output

Onexit: the estimated partial derivatives at the nodes, in a form suitable for passing to
EO1SBF. The derivatives at node r with respect to x and y are contained in GRADS(1,r)
and GRADS(2,r) respectively, for r = 1,2,...,m.

IFAIL - INTEGER. Input/ Output

Onentry. IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL = 1
On entry, M < 3,

IFAIL = 2
On entry, all the (X,Y) pairs are collinear.

IFAIL = 3
On entry, (X(i),Y(i)) = (X(),Y(j)) for some i # j.

Accuracy

On successful exit, the computational errors should be negligible in most situations but the user
should always check the computed surface for acceptability, by drawing contours for instance.
The surface always interpolates the input data exactly.

Further Comments

The time taken for a call of EO1SAF is approximately proportional to the number of data points,
m. The routine is more efficient if, before entry, the values in X, Y, F are arranged so that the X
array is in ascending order.
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9. Example

This program reads in a set of 30 data points and calls EOISAF to construct an interpolating
surface. It then calls EO1SBF to evaluate the interpolant at a sample of points on a rectangular

grid.

Note that this example is not typical of a realistic problem: the number of data points would
normally be larger, and the interpolant would need to be evaluated on a finer grid to obtain an
accurate plot, say.

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

*
*
*

20

*

40

60

[NP1692/14]

EO1SAF Example Program Text
Mark 14 Revised. NAG Copyright 1989.

.. Parameters ..

INTEGER NIN, NOUT

PARAMETER (NIN=5,NOUT=6)

INTEGER MMAX, NMAX

PARAMETER (MMAX=100, NMAX=25)

.. Local Scalars ..

real XHI, XLO, YHI, YLO
INTEGER I, IFAIL, J, M, NX, NY

.. Local Arrays

real F(MMAX), GRADS(2,MMAX), PF(NMAX), PX(NMAX),
+ PY(NMAX), X(MMAX), Y(MMAX)
INTEGER TRIANG(7*MMAX)

.. External Subroutines ..

EXTERNAL EO1SAF, EO1SBF

Intrinsic Functions
INTRINSIC real

Executable Statements ..
WRITE (NOUT,*) ‘EO1SAF Example Program Results’
Skip heading in data file
READ (NIN, %)
Input the number of nodes.
READ (NIN,*) M
IF (M.GE.1 .AND. M.LE.MMAX) THEN
Input the nodes (X,Y) and heights, F.
DO 20 I =1, M
READ (NIN,*) X(I), Y(I), F(I)
CONTINUE
Generate the triangulation and gradients.
IFAIL = 0

CALL EO1SAF(M,X,Y,F,TRIANG,GRADS, IFAIL)

Evaluate the interpolant on a rectangular grid at NX*NY points
over the domain (XLO to XHI) x (YLO to YHI).
READ (NIN,*) NX, XLO, XHI
READ (NIN,*) NY, YLO, YHI
IF (NX.LE.NMAX .AND. NY.LE.NMAX) THEN
DO 40 I = 1, NX

PX(I) = (real(NX-I)/(NX-1))*XLO + (real(I-1)/(NX-1))*XHI
CONTINUE
DO 60 I = 1, NY

PY(I) = (real(NY-I)/(NY-1))*YLO + (real(I-1)/(NY-1))*YHI
CONTINUE
WRITE (NOUT, *)
WRITE (NOUT,99999) - X', (PX(I),I=1,NX)
WRITE (NOUT,*) ' Y’

DO 100 I = NY, 1, -1
DO 80 J = 1, NX
IFAIL = 0
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END IF
END IF

TOP

EOI — Interpolation

CALL EO1SBF(M,X,Y,F, TRIANG, GRADS,PX(J),PY(I),PF(J),
IFAIL)

CONTINUE

9 FORMAT (1X,A,7F8.2)
8 FORMAT (1X,F8.2,3X,7F8.2)
END

9.2. Program Data
EO1SAF Example Program Data

WRITE (NOUT,99998) PY(I),
CONTINUE

(PF(J),Jd=1,NX)

30 M, the number of data points
11.16 1.24 22.15 X, Y, F data point definition
12.85 3.06 22.11
19.85 10.72 7.97
19.72 1.39 16.83
15.91 7.74 15.30
0.00 20.00 34.60
20.87 20.00 5.74
3.45 12.78 41.24
14.26 17.87 10.74
17.43 3.46 18.60
22.80 12.39 5.47
7.58 1.98 29.87
25.00 11.87 4.40
0.00 0.00 58.20
9.66 20.00 4.73
5.22 14.66 40.36
17.25 19.57 6.43
25.00 3.87 8.74
12.13 10.79 13.71
22.23 6.21 10.25
11.52 8.53 15.74
15.20 0.00 21.60
7.54 10.69 19.31
17.32 13.78 12.11
2.14 15.03 53.10
0.51 8.37 49.43
22.69 19.63 3.25
5.47 17.13 28.63
21.67 14.36 5.52
3.31 0.33 44.08 End of the data points
7 3.0 21.0 Grid definition, X axis
6 2.0 17.0 Grid definition, Y axis
9.3. Program Results
EO1SAF Example Program Results
X 3.00 6.00 9.00 12.00 15.00 18.00 21.00
Y
17.00 41.25 27.62 18.03 12.29 11.68 9.09 5.37
14.00 47.61 36.66 22.87 14.02 13.44 11.20 6.46
11.00 38.55 25.25 16.72 13.83 13.08 10.71 6.88
8.00 37.90 23.97 16.79 16.43 15.46 13.02 9.30
5.00 40.49 29.26 22.51 20.72 19.30 16.72 12.87
2.00 43.52 33.91 26.59 22.23 21.15 18.67 14.88
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EO01SBF — NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

EANMANE S A v |

Purpose

EO1SBF evaluates at a given point the two-dimensional interpolant function computed by
EO1SAF.

Specification
SUBROUTINE EO01SBF (M, X, Y, F, TRIANG, GRADS, PX, PY, PF, IFAIL)
INTEGER M, TRIANG(7+*M), IFAIL
real X(M), Y(M), F(M), GRADS(2,M), PX, PY, PF
Description

This routine takes as input the parameters defining the interpolant F(x,y) of a set of scattered
data points (x,,y,.f,), forr = 1,2,..,m, as computed by EO1SAF, and evaluates the interpolant at
the point (px,py).

If (px,py) is equal to (x,,y,) for some value of r, the returned value will be equal to f,.

If (px,py) is not equal to (x,,y,) for any r, the derivatives in GRADS will be used to compute
the interpolant. A triangle is sought which contains the point (px,py), and the vertices of the
triangle along with the partial derivatives and f, values at the vertices are used to compute the
value F(px,py). If the point (px,py) lies outside the triangulation defined by the input
parameters, the returned value is obtained by extrapolation. In this case, the interpolating
function F is extended linearly beyond the triangulation boundary. The method is described in
more detail in Renka and Cline [2] and the code is derived from Renka [1].

EO01SBF must only be called after a call to EO1SAF.

References

[1] RENKA, R.L.
Algorithm 624: Triangulation and Interpolation of Arbitrarily Distributed Points in the
Plane.
ACM Trans. Math. Software, 10, pp. 440-442, 1984.

[2] RENKA, R.L. and CLINE, AK.
A Triangle-based C' Interpolation Method.
Rocky Mountain J. Math., 14, pp. 223-237, 1984,

Parameters

M - INTEGER. Input
X(M) — real array. Input
Y (M) — real array. Input
F(M) — real array. Input
TRIANG(7*M) — INTEGER array. Input
GRADS (2,M) — real array. Input

Onentry: M, X, Y, F, TRIANG and GRADS must be unchanged from the previous call of
EO1SAF.

PX — real. Input
PY - real. Input

On entry: the point (px,py) at which the interpolant is to be evaluated.
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9:  PF - real. Output
On exit: the value of the interpolant evaluated at the point (px,py).

10: IFAIL — INTEGER. Input/ Output

On entry. IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0O unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL =1
On entry, M < 3.

IFAIL = 2

On entry the triangulation information held in the array TRIANG does not specify a valid
triangulation of the data points. TRIANG may have been corrupted since the call to
EO1SAF.

IFAIL = 3

The evaluation point (PX,PY) lies outside the nodal triangulation, and the value returned in
PF is computed by extrapolation.

7. Accuracy
Computational errors should be negligible in most practical situations.

8. Further Comments

The time taken for a call of EO1SBF is approximately proportional to the number of data points,
m.

The results returned by this routine are particularly suitable for applications such as graph
plotting, producing a smooth surface from a number of scattered points.

9. Example
See the example for EO1SAF.

Page 2 (last) [NP1692/14]



EQ1 — Interpolation EO1SEF

EO1SEF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

EO1SEF generates a two-dimensional surface interpolating a set of scattered data points, using a
modified Shepard method.

2. Specification
SUBROUTINE EO1SEF (M, X, Y, F, RNW, RNQ, NW, NQ, FNODES, MINNQ, WRK,

1 IFAIL)
INTEGER M, NW, NQ, MINNQ, IFAIL
real X(M), Y(M), F(M), RNW, RNQ, FNODES(5*M), WRK(6*M)

3. Description

This routine constructs an interpolating surface F (x,y) through a set of m scattered data points
(x,,y,f,), forr = 1,2,...,m, using a modification of Shepard’s method. The surface is continuous
and has continuous first derivatives.

The basic Shepard method, described in [2], interpolates the input data with the weighted mean

2w, (xY)f, )
F(xy) = =————, where w,(x,y) = 7 andd? = (x-x,)% + (y-y,)%
2w, (xy) ’

r=1

The basic method is global in that the interpolated value at any point depends on all the data, but
this routine uses a modification due to Franke and Nielson described in [1], whereby the method
becomes local by adjusting each w, (x,y) to be zero outside a circle with centre (x,,y,) and some
radius R . Also, to improve the performance of the basic method, each f, above is replaced by a
function f, (x,y), which is a quadratic fitted by weighted least-squares to data local to (x,,y,) and
forced to interpolate (x,,y,f,). In this context, a point (x,y) is defined to be local to another
point if it lies within some distance R of it. Computation of these quadratics constitutes the main
work done by this routine. If there are less than 5 other points within distance R, from (x,.y,),
the quadratic is replaced by a linear function. In cases of rank-deficiency, the minimum norm
solution is computed.

The user may specify values for R, and R, but it is usually easier to choose instead two integers
N, and N, from which the routine will compute R,, and R . These integers can be thought of as
the average numbers of data points lying within distances R, and R respectively from each
node. Default values are provided, and advice on alternatives is given in Section 8.2.

The interpolant F(x,y) generated by this routine can subsequently be evaluated for any point
(x,y) in the domain of the data by a call to EO1SFF.

4. References

[1] FRANKE, R. and NIELSON, G.
Smooth Interpolation of Large Sets of Scattered Data.
Internat. J. Num. Methods Engrg., 15, pp. 1691-1704, 1980.

[2] SHEPARD, D.
A Two-dimensional Interpolation Function for Irregularly Spaced Data.
Proc. 23rd Nat. Conf. ACM, Brandon/Systems Press Inc., Princeton, pp. 517-523, 1968.
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Parameters

M - INTEGER. Input
On entry: m, the number of data points.
Constraint: M 2 3,

X(M) - real array. Input
Y(M) - real array. Input
F(M) - real array. Input

On entry: the co-ordinates of the rth data point, for r = 1,2,...,m. The order of the data
points is immaterial.

Constraint: each of the (X(r),Y(r)) pairs must be unique.

RNW - real. Input/ Output
RNQ - real. Input/ Output

On entry: suitable values for the radii R, and R 4> described in Section 3.
Constraint: RNQ < 0 or 0 < RNW < RNQ.

Onexit: if RNQ is set less than or equal to zero on entry, then default values for both of
them will be computed from the parameters NW and NQ, and RNW and RNQ will contain
these values on exit.

NW - INTEGER. Input
NQ - INTEGER. Input

Onentry. if RNQ > 0.0 and RNW > 0.0, then NW and NQ are not referenced by the
routine. Otherwise, NW and NQ must specify suitable values for the integers N,, and N q
described in Section 3.

If NQ is less than or equal to zero on entry, then default values for both of them, namely
NW = 9 and NQ = 18, will be used.

Constraint: NQ < 0or 0 < NW < NQ.

FNODES (5*M) — real array. Output
On exit: the coefficients of the constructed quadratic nodal functions. These are in a form
suitable for passing to EQ1SFF.

MINNQ - INTEGER. Output

On exit: the minimum number of data points that lie within radius RNQ of any node, and
thus define a nodal function. If MINNQ is very small (say, less than 5), then the interpolant
may be unsatisfactory in regions where the data points are sparse.

WRK (6*M) — real array. Workspace

IFAIL — INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

Onexit: IFAIL = 0 unless the routine detects an error (see Section 6).
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8.2.

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = O or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL = 1
On entry, M < 3.

IFAIL = 2
On entry, RNQ > 0 and either RNW > RNQ or RNW < 0.

IFAIL = 3
On entry, NQ > 0 and either NW > NQ or NW < 0.

IFAIL = 4
On entry, (X(i),Y(i)) is equal to (X(j),Y(j)) for some i # j.

Accuracy

On successful exit, the computational errors should be negligible in most situations but the user
should always check the computed surface for acceptability, by drawing contours for instance.
The surface always interpolates the input data exactly.

Further Comments

. Timing

The time taken for a call of EO1SEF is approximately proportional to the number of data points,
m, provided that N_ is of the same order as its default value (18). However if N_ is increased so

that the method becomes more global, the time taken becomes approximately proportional to m?.

Choice of N, and N

/N /N
Note first that the radii R,, and R 0 described in Section 3, are computed as g— —’;;1 and g —;;’—

respectively, where D is the maximum distance between any pair of data points.

Default values N, = 9 and N, = 18 work quite well when the data points are fairly uniformly
distributed. However, for data having some regions with relatively few points or for small data
sets (m < 25), a larger value of N,, may be needed. This is to ensure a reasonable number of
data points within a distance R, of each node, and to avoid some regions in the data area being
left outside all the discs of radius R,, on which the weights w, (x,y) are non-zero. Maintaining N,
approximately equal to 2N, is usually an advantage.

Note however that increasing N,, and N, does not improve the quality of the interpolant in all
cases. It does increase the computational cost and makes the method less local.

Example

This program reads in a set of 30 data points and calls EO1SEF to construct an interpolating
surface. It then calls EO1SFF to evaluate the interpolant at a sample of points on a rectangular
grid.

Note that this example is not typical of a realistic problem: the number of data points would
normally be larger, and the interpolant would need to be evaluated on a finer grid to obtain an
accurate plot, say.
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9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* EO1SEF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER MMAX, NMAX
PARAMETER (MMAX=100, NMAX=25)
* .. Local Scalars ..
real RNQ, RNW, XHI, XLO, YHI, YLO
INTEGER I, IFAIL, J, M, MINNQ, NQ, NW, NX, NY
* .. Local Arrays ..
real F(MMAX), FNODES(S5*MMAX), PF(NMAX), PX(NMAX),
+ PY(NMAX), WRK(6*MMAX), X(MMAX), Y(MMAX)
* .. External Subroutines ..
EXTERNAL EQO1SEF, EOlSFF
* .. Intrinsic Functions
INTRINSIC real
* .. Executable Statements ..
WRITE (NOUT,*) ’‘EO1SEF Example Program Results’
* Skip heading in data file
READ (NIN, %)
* Input the number of nodes.

READ (NIN,*) M
IF (M.GE.1l .AND. M.LE.MMAX) THEN
* Input the nodes (X,Y) and heights, F.
DO 20T =1, M
READ (NIN,*) X(I), Y(I), F(I)
20 CONTINUE
* Compute the nodal function coefficients.
RNQ = 0.0e0
NQ = 0
IFAIL = 0

CALL E01SEF(M,X,Y,F, RNW, RNQ, NW, NQ, FNODES, MINNQ, WRK, IFAIL)

WRITE (NOUT, %)

WRITE (NOUT, 99997) ’ RNW =’, RNW, ’ RNQ =’, RNQ,
+ r  MINNQ =’, MINNQ
WRITE (NOUT, x)
* Evaluate the interpolant on a rectangular grid at NX*NY points
* over the domain (XLO to XHI) x (YLO to YHI).

READ (NIN,*) NX, XLO, XHI
READ (NIN,*) NY, YLO, YHI
IF (NX.LE.NMAX .AND. NY.LE.NMAX) THEN
DO 40 I = 1, NX
PX(I) = (real(NX-I)/(NX-1))*XLO + (real(I-1)/(NX-1))*XHI
40 CONTINUE
DO 60 I = 1, NY
PY(I) = (real(NY-I)/(NY-1))*xYLO + (real(I-1)/(NY-1))*YHI
60 CONTINUE
WRITE (NOUT,99999) X', (PX(I),I=1,NX)
WRITE (NOUT,*) '/ Y’
DO 100 I = NY, 1, -1
DO 80 J = 1, NX
IFAIL = 0

CALL EO1SFF(M,X,Y,F,RNW, FNODES,PX(J),PY(I),PF(J),
+ IFAIL)

80 CONTINUE
WRITE (NOUT,99998) PY(I), (PF(J),J=1,NX)
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10

*

0

END IF

STOP

CONTINUE
END IF

99999 FORMAT (1X,A,7F8.2)

99998 FORMAT (1X,F8.2,3X,7F8.2)
99997 FORMAT (1X,A,F8.2,A,F8.2,A,I3)
END

9.2. Program Data

EO1SEF Example Program Data

7
6

30
11

12.
19.
19.

15
0

20.

3.
14.
17.
22.

7.
25.

.16
85
85
72
.91
.00
87

.31
3.0
2.0

1.24
3.06
10.72
1.39
7.74
20.00
20.00
12.78
17.87
3.46
12.39
1.98
11.87
0.00
20.00
14.66
19.57
3.87
10.79
6.21
8.53
0.00
10.69
13.78
15.03
8.37
19.63
17.13
14.36
0.33
21.0
17.0

9.3. Program Results

EO1SEF Example Program

RNW =

22.
22.

7.
16.
15.
34.

5.
41.
10.
18.

5.
29.

4.
58.

40.

8.22 RNQ

.00

M, the number of data points

.08 End of data points
Grid definition, X axis
Grid definition, Y axis

Results

11.62 MINNQ =

12.

4
15.00

12.06
13.29
12.75
15.56
18.98
21.09

15 X, Y, F data point definition

2

R

EO1SEF

1.00

anNoOToU
[}
w
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EO1SFF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

AN S A

10:

Purpose

EO1SFF evaluates at a given point the two-dimensional interpolating function computed by
EO1SEF.

Specification
SUBROUTINE EO1SFF (M, X, Y, F, RNW, FNODES, PX, PY, PF, IFAIL)
INTEGER . M, IFAIL
real X(M), Y(M), F(M), RNW, FNODES(5*M), PX, PY, PF
Description

This routine takes as input the interpolant F(x,y) of a set of scattered data points (x,,y,f,), for
r = 1,2,..,m, as computed by E01SEF, and evaluates the interpolant at the point (px,py).

If (px,py) is equal to (x,,y,) for some value of r, the returned value will be equal to f,.
If (px,py) is not equal to (x,,y,) for any r, all points that are within distance RNW of (px,py),

along with the corresponding nodal functions given by FNODES, will be used to compute a
value of the interpolant.

EO1SFF must only be called after a call to EO1SEF.

References

[1] FRANKE, R. and NIELSON, G.
Smooth Interpolation of Large Sets of Scattered Data.
Internat. J. Numer. Methods Engrg., 15, pp. 1691-1704, 1980.

[2] SHEPARD, D.
A Two-dimensional Interpolation Function for Irregularly Spaced Data.
Proc. 23rd Nat. Conf. ACM, Brandon/Systems Press Inc., Princeton, pp. 517-523, 1968.

Parameters

M — INTEGER. Input

X(M) - real array. Input

Y(M) — real array. Input

F(M) — real array. Input

RNW - real. Input

FNODES (5*M) — real array. Input
Onentry: M, X, Y, F, RNW and FNODES must be unchanged from the previous call of
EO1SEF.

PX — real. Input

PY — real. Input

On entry: the point (px,py) at which the interpolant is to be evaluated.

PF - real. Output
On exit: the value of the interpolant evaluated at the point (px,py).

IFAIL — INTEGER. Input/ Qutput

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is O.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).
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6. Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL = 1
On entry, M < 3.
IFAIL = 2

The interpolant cannot be evaluated because the evaluation point (PX,PY) lies outside the
support region of the data supplied in X, Y and F. This error exit will occur if (PX,PY) lies
at a distance greater than or equal to RNW from every point given by arrays X and Y.

The value 0.0 is returned in PF. This value will not provide continuity with values obtained
at other points (PX,PY), i.e. values obtained when IFAIL = 0 on exit.

7. Accuracy
Computational errors should be negligible in most practical situations.

8. Further Comments

The time taken for a call of EO1SFF is approximately proportional to the number of data points,
m.

The results returned by this routine are particularly suitable for applications such as graph
plotting, producing a smooth surface from a number of scattered points.

9. Example
See the example for EO1SEF.
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E01SGF — NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

E01SGF generates a two-dimensional interpolant to a set of scattered data points, using a modified
Shepard method.

2 Specification

SUBROUTINE EO1SGF(M, X, Y, F, NW, NQ, IQ, LIQ, RQ, LRQ, IFAIL)
real X(M), Y(M), F(M), RQ(LRQ)
INTEGER : M, NW, NQ, IQ(LIQ), LIQ, LRQ, IFAIL

3 Description

This routine constructs a smooth function Q(z,y) which interpolates a set of m scattered data points
(z,,9,, f.), for r =1,2,...,m, using a modification of Shepard’s method. The surface is continuous and
has continuous first partial derivatives.

The basic Shepard method, described in [5], interpolates the input data with the weighted mean

Qz,y) = %’%ﬂr(%_y)qr_

r=1 wr(z, y) ’
where ]
q, = f, and w.(z,y) = 7 and d® = (z —z,.)% + (y—y,)*

The basic method is global in that the interpolated value at any point depends on all the data, but this
routine uses a modification (see [2], [3]), whereby the method becomes local by adjusting each w,(z,y)
to be zero outside a circle with centre (z,,y,) and some radius R,,. Also, to improve the performance of
the basic method, each g, above is replaced by a function g,.(z, y), which is a quadratic fitted by weighted
least-squares to data local to (z,,y,) and forced to interpolate (z,,¥,, f,). In this context, a point (z, y)
is defined to be local to another point if it lies within some distance R, of it. Computation of these
quadratics constitutes the main work done by this routine.

The efficiency of the routine is further enhanced by using a cell method for nearest neighbour searching
due to Bentley and Friedman [1].

The radii R,, and R, are chosen to be just large enough to include N,, and N, data points, respectively,
for user-supplied constants N, and N,. Default values of these parameters are provided by the routine,
and advice on alternatives is given in Section 8.2.

This routine is derived from the routine QSHEP2 described by Renka [4].

Values of the interpolant Q(z,y) generated by this routine, and its first partial derivatives, can
subsequently be evaluated for points in the domain of the data by a call to EO1SHF.

4 References

[1] Bentley J L and Friedman J H (1979) Data structures for range searching ACM Comput. Surv. 11
397-409

[2] Franke R and Nielson G (1980) Smooth interpolation of large sets of scattered data Internat. J.
Num. Methods Engrg. 15 1691-1704

[3] Renka R J (1988) Multivariate interpolation of large sets of scattered data ACM Trans. Math.
Software 14 139-148
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[4]

[5]

10:

11:

Renka R J (1988) Algorithm 660: QSHEP2D: Quadratic Shepard method for bivariate interpolation
of scattered data ACM Trans. Math. Software 14 149-150

Shepard D (1968) A two-dimensional interpolation function for irregularly spaced data Proc. 23rd
Nat. Conf. ACM Brandon/Systems Press Inc., Princeton 517-523

Parameters

M — INTEGER Input

On entry: m, the number of data points.

Constraint: M > 6.

X(M) — real array Input
Y(M) — real array Input
On entry: the Cartesian coordinates of the data points (z,,y,), for r=1,2,...,m.

Constraint: these coordinates must be distinct, and must not all be collinear.

F(M) — real array Input
On entry: the data values f,, forr=1,2,...,m.
NW — INTEGER Input

On entry: the number N, of data points that determines each radius of influence R,,, appearing in
the definition of each of the weights w,, for r = 1,2,...,m (see Section 3). Note that R, is different
for each weight. If NW < 0 the default value NW = min(19,M—1) is used instead.

Constraint: NW < min(40,M-1).
NQ — INTEGER Input

On entry: the number N, of data points to be used in the least-squares fit for coefficients defining

the nodal functions g,(z, y) (see Section 3). If NQ < 0 the default value NQ = min(13,M—1) is used
instead.

Constraint: NQ < 0 or 5 < NQ < min(40,M-1).

IQ(LIQ) — INTEGER array QOutput
On exit: integer data defining the interpolant Q(z,y).

LIQ — INTEGER Input

On entry: the dimension of the array IQ as declared in the (sub)program from which E01SGF is
called.

Constraint: LIQ > 2 x M + 1.

RQ(LRQ) — real array Output
On ezit: real data defining the interpolant Q(z, y).

LRQ — INTEGER Input

On entry: the dimension of the array RQ as declared in the (sub)program from which EO1SGF is
called.

Constraint: LRQ > 6 x M + 5.
IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter (described
in Chapter P01) the recommended value is 0.

On ezit: IFAIL = 0 unless the routine detects an error (see Section 6).
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6 Errors and Warnings

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors detected by the routine:
IFAIL = 1

On entry, M < 6,
or 0 < NQ <5,
or NQ > min(40,M-1),
or NW > min(40,M-1),
or LIQ<2x M+ 1,
or LRQ<6 x M + 5.

IFAIL = 2
On entry, (X(7),Y(?)) = (X(4),Y(y)) for some ¢ # j.
IFAIL = 3

On entry, all the data points are collinear. No unique solution exists.

7 Accuracy

On successful exit, the function generated interpolates the input data exactly and has quadratic accuracy.

8 Further Comments
8.1 Timing

The time taken for a call to EOISGF will depend in general on the distribution of the data points. If X
and Y are uniformly randomly distributed, then the time taken should be O(M). At worst O(M?) time
will be required.

8.2 Choice of N, and N,

Default values of the parameters N,, and N, may be selected by calling EOISGF with NW < 0 and NQ
< 0. These default values may well be satisfactory for many applications.

If non-default values are required they must be supplied to EO1SGF through positive values of NW
and NQ. Increasing these parameters makes the method less local. This may increase the accuracy of
the resulting interpolant at the expense of increased computational cost. The default values NW =
min(19,M—1) and NQ = min(13,M—1) have been chosen on the basis of experimental results reported
in [3]. In these experiments the error norm was found to vary smoothly with N, and N,, generally
increasing monotonically and slowly with distance from the optimal pair. The method is not therefore
thought to be particularly sensitive to the parameter values. For further advice on the choice of these
parameters see [3].

9 Example

This program reads in a set of 30 data points and calls EQ1SGF to construct an interpolating function
Q(z,y). It then calls EOISHF to evaluate the interpolant at a set of points.

Note that this example is not typical of a realistic problem: the number of data points would normally
be larger.
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9.1 Program Text

*

*  *

20

*

40

E01SGF 4

EO1SGF Example Program Text
Mark 18 Release. NAG Copyright 1997.

. Parameters ..

INTEGER NIN, NOUT

PARAMETER (NIN=5,NOUT=6)

INTEGER MMAX, NMAX, LIQ, LRQ

PARAMETER (MMAX=100,NMAX=100,LIQ=2#MMAX+1,LRQ=6*MMAX+5)
. Local Scalars ..

INTEGER I, IFAIL, M, N, NQ, NW
. Local Arrays ..

real F(MMAX), Q(NMAX), QX(NMAX), QY(NMAX), RQ(LRQ),

U(NMAX), V(NMAX), X(MMAX), Y(MMAX)

INTEGER 1Q(LIQ)

.. External Subroutines ..

EXTERNAL E01SGF, EO1SHF

. Executable Statements .
WRITE (NOUT,*) ’E01SGF Example Program Results’
WRITE (NOUT,*)
Skip heading in data file
READ (NIN,*)

Input the number of nodes.

READ (NIN,*) M
IF (M.GT.0 .AND. M.LE.MMAX) THEN

Input the data points X,Y and F.
DO20I =1, M

READ (NIN,*) X(I), Y(I), F(I)
CONTINUE

Generate the interpolant.

NQ =0
NW =0
IFAIL = 0

CALL E01SGF(M,X,Y,F,NW,NQ,IQ,LIQ,RQ,LRQ,IFAIL)
Input the number of evaluation points.
READ (NIN,*) N
Input the evaluation points.
DD 40 I =1, N
READ (NIN,*) U(I), V(I)
CONTINUE

Evaluate the interpolant using EO1SHF.

IFAIL = -1
CALL EO1SHF(M,X,Y,F,IQ,LIQ,RQ,LRQ,N,U,V,Q,QX,QY,IFAIL)

WRITE (NOUT,*) °’ I u(1) V(1) Q(I)°’
DO60I=1,N
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%*

60

WRITE (NOUT,99999) I, U(I), V(I), Q(I)
CONTINUE

END IF

STO

P

99999 FORMAT (1X,I16,3F10.2)

END

9.2 Program Data

EO1SGF Example Program Data

30

11.
12.

19

19.
15.
0.
20.
3.
14.

17

22.
7.
25.
0.
9.
5.
17.
25.
12.
22,
11.
15.
7.
17.
2.
0.
22.

5
21

3.

5

20.

6

7.
9.
12.

16
85
.85
72
91
00
87
45
26
.43
80
68
00
00
66
22
25
00
13
23
62
20
54
32
14
51
69
.47
.67
31

00
.41
54
91
30
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1.

24

3.06

10.
1.
7.

20.

20.

.78

17.

12

3

12.
1.
11.
0.
20.
14.
19.
3.
10.
6.
8.
0.
10.
13.
15.
8.
19.
17.
14.
0.

15

72
39
74
00
00

87

.46

39
98
87
00
00
66
57
87
79
21
63
00
69
78
03
37
63
13
36
33

.14
.44
10.
18.
.22

69
27

22
22

7.
16.
15.
34.

5.
41.

10

18.

5

29.
4.
58.
4.
40.

6
8

13.
10.
15.
21.
19.
12.
53.

49

3.
28.
5.
44.

.15
.11
97
83
30
60
74
24
.74
60
.47
87
40
20
73
36
.43
.74
71
25
74
60
31
11
10
.43
25
63
52
08

M, the number of data points
X, Y, F data point definition

End of data points
N, the number of evaluation points
U, V evaluation point definition

End of evaluation points

E01SGF
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9.3 Program Results

EO1SGF Example Program Results

G W= H

u(I)
20.00
6.41
7.54
9.91
12.30

V(D)
3.14
15.44
10.69
18.27
9.22

Q(I)
15.89
34.05
19.31
13.68
14.56

E01 - Interpolation

E01SGF.6 (last)
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E01SHF — NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose
E01SHF evaluates the two-dimensional interpolating function generated by EO1SGF and its first partial
derivatives.
2 Specification

SUBROUTINE EO1SHF(M, X, Y, F, IQ, LIQ, RQ, LRQ, N, U, V, Q, QX,

1 QY, IFAIL)

real X(M), Y(M), F(M), RQ(LRQ), U(N), V(N), Q(N),

1 Qx(N), QY(N)

INTEGER M, IQ(LIQ), LIQ, LRQ, N, IFAIL
3 Description
This routine takes as input the interpolant Q(z,y) of a set of scattered data points (z,, ¥, f.), for
r=1,2,...,m, as computed by EOISGF, and evaluates the interpolant and its first partial derivatives
at the set of points (u;,v;), fori=1,2,...,n.

EO01SHF must only be called after a call to EQ1SGF.

This

4
(1]

5

L

routine is derived from the routine QS2GRD described by Renka [1].

References

Renka R J (1988) Algorithm 660: QSHEP2D: Quadratic Shepard method for bivariate interpolation
of scattered data ACM Trans. Math. Software 14 149-150

Parameters

M — INTEGER Input
X(M) — real array Input
Y(M) — real array Input
F(M) — real array Input

On entry: M, X, Y and F must be the same values as were supplied in the preceeding call to

E01SGF.

IQ(LIQ) — INTEGER array Input

On entry: 1Q must be unchanged from the value returned from a previous call to EO1SGF.

LIQ — INTEGER Input

On entry: the dimension of the array IQ as declared in the (sub)program from which E01SHF is
called.

Constraint: LIQ > 2 x M + 1.

RQ(LRQ) — real array Input
On entry: RQ must be unchanged from the value returned from a previous call to E01SGF.
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8: LRQ — INTEGER Input
On entry: the dimension of the array RQ as declared in the (sub)program from which EO1SHF is
called.

Constraint: LRQ > 6 x M + 5.

9: N — INTEGER Input

On entry: n, the number of evaluation points.

Constraint: N > 1.

10: U(N) — real array Input

11: V(N) — real array Input
On entry: the evaluation points (u;,v;), for¢ =1,2,...,n.

12: Q(N) — real array Output
On ezit: the values of the interpolant at (u;,v;), for i =1,2,...,n. If any of these evaluation points

lie outside the region of definition of the interpolant the corresponding entries in Q are set to the
largest machine representable number (see X02ALF), and EO1SHF returns with IFAIL = 3.

13: QX(N) — real array Output
14: QY(N) — real array Output

On exit: the values of the partial derivatives of the interpolant Q(z,y) at (u;,v;), fori =1,2,...,n.
If any of these evaluation points lie outside the region of definition of the interpolant, the
corresponding entries in QX and QY are set to the largest machine representable number (see
X02ALF), and EOLSHF returns with IFAIL = 3.

15: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter (described
in Chapter P01) the recommended value is 0.

On ezit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Errors and Warnings

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors detected by the routine:
IFAIL =1

On entry, M < 6,
or LIQ<2xM+41,
or LRQ< 6 x M + 5,
or N<1.

IFAIL = 2
Values supplied in IQ or RQ appear to be invalid. Check that these arrays have not been corrupted
between the calls to EO1SGF and E01SHF.

IFAIL = 3

At least one evaluation point lies outside the region of definition of the interpolant. At all such
points the corresponding values in Q, QX and QY have been set to the largest machine representable
number (see X02ALF).
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7 Accuracy

Computational errors should be negligible in most practical situations.

8 Further Comments

The time taken for a call to EQ1SHF will depend in general on the distribution of the data points. If
X and Y are approximately uniformly distributed, then the time taken should be only O(N). At worst

O(MN) time will be required.

9 Example
See Section 9 of the document for EO1SGF.

[NP3086/18] E0ISHF.3 (last)






E01 - Interpolation E01TGF

EO1TGF — NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

EO1TGF generates a three-dimensional interpolant to a set of scattered data points, using a modified
Shepard method.

2 Specification

SUBROUTINE EO1TGF(M, X, Y, Z, F, NW, NQ, IQ, LIQ, RQ, LRQ, IFAIL)
real M), Y(M), Z(M), F(M), RQ(LRQ)
INTEGER M, NW, NQ, IQ(LIQ), LIQ, LRQ, IFAIL

3 Description

This routine constructs a smooth function Q(z,y, z) which interpolates a set of m scattered data points
(z,, 9,2, f,), for r = 1,2,...,m, using a modification of Shepard’s method. The surface is continuous
and has continuous first partial derivatives.

The basic Shepard method, which is a generalization of the two-dimensional method described in [5],

interpolates the input data with the weighted mean

Z:'nzl wr(z’ Y, Z)q,.
Z:n:l w,(:c, Y, Z) ’

Qz,y,2) =

where
— d . _ 1 d dZ — - )2 2 2
qr_fr an wr(xwy)z)—d_zan r_'(‘l’—'cr) +(y_yr) +(Z—Z,.) .

The basic method is global in that the interpolated value at any point depends on all the data, but this
routine uses a modification (see [2], [3]), whereby the method becomes local by adjusting each w,(z,y, )
to be zero outside a sphere with centre (z,,y,, 2,) and some radius R,,. Also, to improve the performance
of the basic method, each g, above is replaced by a function g,(z,y, z), which is a quadratic fitted by
weighted least-squares to data local to (z,,y,, z,) and forced to interpolate (z,,y,, 2,, f,). In this context,
a point (z,y, z) is defined to be local to another point if it lies within some distance R, ofit. Computation
of these quadratics constitutes the main work done by this routine.

The efficiency of the routine is further enhanced by using a cell method for nearest neighbour searching
due to Bentley and Friedman [1].

The radii R, and R, are chosen to be just large enough to include N,, and N, data points, respectively,
for user-supplied constants N,, and N,. Default values of these parameters are provided by the routine,
and advice on alternatives is given in Section 8.2.

This routine is derived from the routine QSHEP3 described by Renka [4].

Values of the interpolant Q(z,y,z) generated by this routine, and its first partial derivatives, can
subsequently be evaluated for points in the domain of the data by a call to EOITHF.

4 References

[1] Bentley J L and Friedman J H (1979) Data structures for range searching ACM Comput. Surv. 11
397-409

[2] Franke R and Nielson G (1980) Smooth interpolation of large sets of scattered data Internat. J.
Num. Methods Engrg. 15 1691-1704
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(3]

10:

11:

Renka R J (1988) Multivariate interpolation of large sets of scattered data ACM Trans. Math.
Software 14 139-148

Renka R J (1988) Algorithm 661: QSHEP3D: Quadratic Shepard method for trivariate interpolation
of scattered data ACM Trans. Math. Software 14 151-152

Shepard D (1968) A two-dimensional interpolation function for irregularly spaced data Proc. 23rd
Nat. Conf. ACM Brandon/Systems Press Inc., Princeton 517-523

Parameters

M — INTEGER Input

On entry: m, the number of data points.

Constraint: M > 10.

X(M) — real array Input
Y(M) — real array Input
Z(M) — real array Input
On entry: the Cartesian coordinates of the data points (z,,y,,z,.), forr=1,2,...,m.

Constraint: these coordinates must be distinct, and must not all be coplanar.

F(M) — real array Input

On entry: the data values f,., forr=1,2,...,m.

NW — INTEGER Input

On entry: the number N, of data points that determines each radius of influence R, appearing in
the definition of each of the weights w,, for r = 1,2,..., m (see Section 3). Note that R,, is different
for each weight. If NW < 0 the default value NW = min(32,M—1) is used instead.

Constraint: NW < min(40,M—1).

NQ — INTEGER Input

On entry: the number N, of data points to be used in the least-squares fit for coefficients defining

the nodal functions ¢,.(z,y, z) (see Section 3). If NQ < 0 the default value NQ = min(17,M—1) is
used instead.

Constraint: NQ < 0 or 9 < NQ < min(40,M-1).

IQ(LIQ) — INTEGER array Output
On exit: integer data defining the interpolant Q(z,y, z).

LIQ — INTEGER Input

On entry: the dimension of the array IQ as declared in the (sub)program from which EOITGF is
called.

Constraint: LIQ > 2 x M + 1.

RQ(LRQ) — real array Output
On ezit: real data defining the interpolant Q(z,y, z).

LRQ — INTEGER Input

On entry: the dimension of the array RQ as declared in the (sub)program from which EO1TGF is
called.

Constraint: LRQ > 10 x M 4+ 7.
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12: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter (described
in Chapter PO1) the recommended value is 0.

On ezit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Errors and Warnings

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message unit

(as defined by X04AAF).

Errors detected by the routine:

IFAIL =1

On entry, M < 10,
or 0 < NQ<9,
or NQ > min(40,M-1),
or NW > min(40,M-1),
or LIQ<2x M+ 1,
or LRQ<10x M+ 7.

IFAIL = 2
On entry, (X(4),Y(4),2(7)) = (X(5),Y(5),Z(j)) for some i # j.
IFAIL = 3

On entry, all the data points are coplanar. No unique solution exists.

7 Accuracy

On successful exit, the function generated interpolates the input data exactly and has quadratic accuracy.

8 Further Comments
8.1 Timing

The time taken for a call to EO1I'TGF will depend in general on the distribution of the data points. If X,
Y and Z are uniformly randomly distributed, then the time taken should be O(M). At worst O(M?) time

will be required.

8.2 Choice of N, and N,

Default values of the parameters N, and N, may be selected by calling EOITGF with NW < 0 and NQ
< 0. These default values may well be satisfactory for many applications.

If non-default values are required they must be supplied to EOITGF through positive values of NW
and NQ. Increasing these parameters makes the method less local. This may increase the accuracy of
the resulting interpolant at the expense of increased computational cost. The default values NW =
min(32,M—1) and NQ = min(17,M—1) have been chosen on the basis of experimental results reported
in [3]. In these experiments the error norm was found to vary smoothly with N, and N,, generally
increasing monotonically and slowly with distance from the optimal pair. The method is not therefore
thought to be particularly sensitive to the parameter values. For further advice on the choice of these
parameters see [3].
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9 Example

This program reads in a set of 30 data points and calls EOITGF to construct an interpolating function
Q(z,y, z). It then calls EOITHF to evaluate the interpolant at a set of points.

Note that this example is not typical of a realistic problem: the number of data points would normally

be larger.

9.1 Program Text

*

* ¥ *

20

40

E0ITGF 4

+
+

EO1TGF Example Program Text
Mark 18 Release. NAG Copyright 1997.

. Parameters .
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER MMAX, NMAX, LIQ, LRQ
PARAMETER (MMAX=100,NMAX=100,LIQ=2*MMAX+1,LRQ=10%MMAX+T7)
. Local Scalars ..
INTEGER I, IFAIL, M, N, NQ, NW
. Local Arrays ..
real F(MMAX), Q(NMAX), QX(NMAX), QY(NMAX), QZ(NMAX),
RQ(LRQ), U(NMAX), V(NMAX), W(NMAX), X(MMAX),
Y(MMAX), Z(MMAX)
INTEGER I1Q(LIQ)
. External Subroutines ..
EXTERNAL EO1TGF, EO1THF

. Executable Statements ..
WRITE (NOUT,*) ’EO1TGF Example Program Results’
WRITE (NOUT,*)
Skip heading in data file
READ (NIN,*)

Input the number of nodes.

READ (NIN,*) M
IF (M.GT.O .AND. M.LE.MMAX) THEN

Input the data points X,Y,Z and F.
DO20I =1, M

READ (NIN,*) X(I), Y(I), 2(I), F(I)
CONTINUE

Generate the interpolant.

NQ =0
NW =0
IFAIL = 0

CALL EO1TGF(M,X,Y,Z,F,NW,NQ,IQ,LIQ,RQ,LRQ,IFAIL)
Input the number of evaluation points.

READ (NIN,*) X

Input the evaluation points.

DO40 I =1, N

READ (NIN,#*) U(I), V(I), W(I)
CONTINUE
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60

*

END IF

Evaluate the interpolant using EO1THF.

IFAIL = -1
CALL EO1THF(M,X,Y,Z,F,IQ,LIQ,RQ,LRQ,N,U,V,W,Q,QX,QY,QZ,IFAIL)

WRITE (NOUT,*) °’

poeé0oI=1, N

CONTINUE

STOP

I Uu(I) V(1) w(I)

WRITE (NOUT,99999) I, U(I), V(I), W(I), Q(I)

99999 FORMAT (1X,I6,4F10.4)
END

9.2 Program Data

EO1TGF Example

30

.80
.23
.18
.58
.64
.88
.30
.87
.04
.62
.87
.62
.86
.87
.49
.12
.02
.62
.49
.36
.62
.01
.41
.17
.51
.85
.20
.04
.31
.88

.10
.20
.30
.40
.50
.60

O O OO0 O MO OO0ODO0OO0ODO0ODO0OO0OO0ODO0OO0ODO0ODO0OODO0OO0DO0O0ODO0DO0OO0DO0OO0OO0OO0DO0OOOO0OO0
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O OO0 00000000000 O0OO0ODO0DO0ODO0OO0ODO0OO0OO0ODO0OO0OO0O0OO0OOoOOo

O OO0 O OO

.23
.88
.43
.95
.69
.35
.10
.09
.02
.90
.96
.64
.13
.60
.43
.61
.71
.93
.54
.56
.42
.72
.36
.99
.29
.05
.20
.67
.63
.27

.10
.20
.30
.40
.50
.60

O O 0O OO0 0000000 O0OO0ODO0ODO0DO0OO0DO0ODO0ODO0DO0OO0OO0OO0OO0O OO OO OO

O OO O OO

Program Data

.37
.05
.04
.62
.20
.49
.78
.05
.40
.43
.24
.45
.47
.46
.13
.00
.82
.44
.04
.39
.97
.45
.52
.65
.59
.04
.87
.04
.18
.07

.10
.20
.30
.40
.50
.60

o

o

OO NOOOK OO WNOO ©C O N O = O

O O O N OO

o O O

.51
.80
.11
.65
.93
.72
.11
.67
.00
.20
.17
.74
.64
.07
.22
.41
.58
.48
.37
.35
.20
.78
.11
.82
.14
.61
.25
.59
.50
.71

M, the number of data points
X, Y, Z, F data point definition

End of data points
N, the number of evaluation points
U, V, W evaluation point definition

End of evaluation points

E01TGF

Q(I)’
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9.3 Program Results

EO1TGF Example Program Results

I u(I) v(I) w(I) Q(1)

1 0.1000 0.1000 0.1000 0.2630
2 0.2000 0.2000 0.2000 0.1182
3 0.3000 0.3000 0.3000 0.0811
4 0.4000 0.4000 0.4000 0.1552
5 0.5000 0.5000 0.5000 0.3019
6 0.6000 0.6000 0.6000 0.5712
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EO1THF — NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

EO01THF evaluates the three-dimensional interpolating function generated by EO1TGF and its first partial
derivatives.

2 Specification

SUBROUTINE EO1THF(M, X, Y, Z, F, IQ, LIQ, RQ, LRQ, N, U, V, W, Q,

1 QX, QY, QZ, IFAIL)

real X(M), Y(M), Z(M), F(M), RQ(LRQ), U(N), V(N),
1 W(N), Q(N), QX(N), QY(N), QZ(N)

INTEGER M, IQ(LIQ), LIQ, LRQ, N, IFAIL

3 Description

This routine takes as input the interpolant Q(z,y, z) of a set of scattered data points (z,,y,, z,, f,.), for
r=1,2,...,m, as computed by EOITGF, and evaluates the interpolant and its first partial derivatives

at the set of points (u;,v;,w;), fori=1,2,...,n.
EO1THF must only be called after a call to EOITGF.
This routine is derived from the routine QS3GRD described by Renka [1].

4 References

[1] Renka R J (1988) Algorithm 661: QSHEP3D: Quadratic Shepard method for trivariate interpolation
of scattered data ACM Trans. Math. Software 14 151-152

5 Parameters

1: M — INTEGER Input

2:  X(M) — real array Input

3: Y(M) — real array Input

4: Z(M) — real array Input

5: F(M) — real array Input
On entry: M, X, Y, Z and F must be the same values as were supplied in the preceeding call to
E01TGF.

6: IQ(LIQ) — INTEGER array Input
On entry: IQ must be unchanged from the value returned from a previous call to EO1TGF.

7: LIQ — INTEGER Input
On entry: the dimension of the array IQ as declared in the (sub)program from which EO1THF is
called.

Constraint: LIQ > 2 x M + 1.
8: RQ(LRQ) — real array Input

On entry: RQ must be unchanged from the value returned from a previous call to EO1TGF.
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Note. Please refer to the Users’' Note for your implementation to check that a routine is available.

Routine Mark of

Name Introduction Purpose

EO2ACF 1 Minimax curve fit by polynomials

EO02ADF 5 Least-squares curve fit, by polynomials, arbitrary data points

EO2AEF 5 Evaluation of fitted polynomial in one variable from Chebyshev series
form (simplified parameter list)

EO2AFF 5 Least-squares polynomial fit, special data points (including
interpolation)

EO2AGF 8 Least-squares polynomial fit, values and derivatives may be constrained,
arbitrary data points,

EO2AHF 8 Derivative of fitted polynomial in Chebyshev series form

EO2AJF 8 Integral of fitted polynomial in Chebyshev series form

EO2AKF 8 Evaluation of fitted polynomial in one variable, from Chebyshev series
form

EO2BAF 5 Least-squares curve cubic spline fit (including interpolation)

EO2BBF 5 Evaluation of fitted cubic spline, function only

EO2BCF 7 Evaluation of fitted cubic spline, function and derivatives

EO2BDF 7 Evaluation of fitted cubic spline, definite integral

EO2BEF 13 Least-squares cubic spline curve fit, automatic knot placement

EO2CAF 7 Least-squares surface fit by polynomials, data on lines

EO2CBF 7 Evaluation of fitted polynomial in two variables

EO2DAF 6 Least-squares surface fit, bicubic splines

EO2DCF 13 Least-squares surface fit by bicubic splines with automatic knot place-
ment, data on rectangular grid

EO2DDF 13 Least-squares surface fit by bicubic splines with automatic knot place-
ment, scattered data

EO2DEF 14 Evaluation of a fitted bicubic spline at a vector of points

EO2DFF 14 Evaluation of a fitted bicubic spline at a mesh of points

E02GAF 7 L,-approximation by general linear function

EO2GBF 7 L,-approximation by general linear function subject to linear inequality
constraints

E02GCF 8 L _,-approximation by general linear function

EO2RAF 7 Padé-approximants

EO2RBF 7 Evaluation of fitted rational function as computed by E02RAF

EO2ZAF 6 Sort 2-D data into panels for fitting bicubic splines
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Curve and Surface Fitting
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1 Scope of the Chapter

The main aim of this chapter is to assist the user in finding a function which approximates a set of
data points. Typically the data contain random errors, as of experimental measurement, which need
to be smoothed out. To seek an approximation to the data, it is first necessary to specify for the
approximating function a mathematical form (a polynomial, for example) which contains a number of
unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which
provide the best fit of that particular form. The chapter deals mainly with curve and surface fitting
(i.e., fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as
the fitting function, since these cover the most common needs. However, fitting with other functions
and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which
are contained in other chapters) depending on whether the coefficients in the function occur linearly or
nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first
reading a suitable set of points from the graph.

The chapter also contains routines for evaluating, differentiating and integrating polynomial and spline
curves and surfaces, once the numerical values of their coefficients have been determined.

There is, too, a routine for computing a Padé approximant of a mathematical function (see Section 2.6
and Section 3.8).

2 Background to the Problems
2.1 Preliminary Considerations

In the curve-fitting problems considered in this chapter, we have a dependent variable y and an
independent variable z, and we are given a set of data points (z,,y,), forr=1,2,...,m. The preliminary
matters to be considered in this section will, for simplicity, be discussed in this context of curve-fitting
problems. In fact, however, these considerations apply equally well to surface and higher-dimensional
problems. Indeed, the discussion presented carries over essentially as it stands if, for these cases, we
interpret z as a vector of several independent variables and correspondingly each z, as a vector containing
the rth data value of each independent variable.

We wish, then, to approximate the set of data points as closely as possible with a specified function,
f(z) say, which is as smooth as possible: f(z) may, for example, be a polynomial. The requirements of
smoothness and closeness conflict, however, and a balance has to be struck between them. Most often,
the smoothness requirement is met simply by limiting the number of coefficients allowed in the fitting
function — for example, by restricting the degree in the case of a polynomial. Given a particular number
of coefficients in the function in question, the fitting routines of this chapter determine the values of the
coefficients such that the ‘distance’ of the function from the data points is as small as possible. The
necessary balance is struck by the user comparing a selection of such fits having different numbers of
coefficients. If the number of coefficients is too low, the approximation to the data will be poor. If the
number is too high, the fit will be too close to the data, essentially following the random errors and
tending to have unwanted fluctuations between the data points. Between these extremes, there is often a
group of fits all similarly close to the data points and then, particularly when least-squares polynomials
are used, the choice is clear: it is the fit from this group having the smallest number of coefficients.

The above process can be seen as the user minimizing the smoothness measure (i.e., the number of
coefficients) subject to the distance from the data points being acceptably small. Some of the routines,
however, do this task themselves. They use a different measure of smoothness (in each case one that 1s
continuous) and minimize it subject to the distance being less than a threshold specified by the user.
This is a much more automatic process, requiring only some experimentation with the threshold.

2.1.1 Fitting criteria: norms

A measure of the above ‘distance’ between the set of data points and the function f(z) is needed. The
distance from a single data point (z,.,y,) to the function can simply be taken as

€, =y,.—f(x,~), (1)

and is called the residual of the point. (With this definition, the residual is regarded as a function of the
coefficients contained in f(z); however, the term is also used to mean the particular value of ¢, which
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corresponds to the fitted values of the coefficients.) However, we need a measure of distance for the set
of data points as a whole. Three different measures are used in the different routines (which measure to
select, according to circumstances, is discussed later in this sub-section). With ¢, defined in (1), these
measures, Or nOrms, are

m

2l (2)

r=1

(3)

and
max|e,.|, (4)
r

respectively the !, norm, the [, norm and the [, norm.

Minimization of one or other of these norms usually provides the fitting criterion, the minimization being
carried out with respect to the coefficients in the mathematical form used for f(z): with respect to the
b; for example if the mathematical form is the power series in (8) below. The fit which results from
minimizing (2) is known as the [, fit, or the fit in the !, norm: that which results from minimizing (3)
is the I, fit, the well-known least-squares fit (minimizing (3) is equivalent to minimizing the square of
(3), i.e., the sum of squares of residuals, and it is the latter which is used in practice), and that from
minimizing (4) is the !, or minimax, fit.

Strictly speaking, implicit in the use of the above norms are the statistical assumptions that the random
errors in the y, are independent of one another and that any errors in the z, are negligible by comparison.
From this point of view, the use of the [, norm is appropriate when the random errors in the y, have a
normal distribution, and the !, norm is appropriate when they have a rectangular distribution, as when
fitting a table of values rounded to a fixed number of decimal places. The [, norm is appropriate when
the error distribution has its frequency function proportional to the negative exponential of the modulus
of the normalised error — not a common situation.

However, the user is often indifferent to these statistical considerations, and simply seeks a fit which can
be assessed by inspection, perhaps visually from a graph of the results. In this event, the !, norm is
particularly appropriate when the data are thought to contain some ‘wild’ points (since fitting in this
norm tends to be unaffected by the presence of a small number of such points), though of course in simple
situations the user may prefer to identify and reject these points. The [, norm should be used only when
the maximum residual is of particular concern, as may be the case for example when the data values have
been obtained by accurate computation, as of a mathematical function. Generally, however, a routine
based on least-squares should be preferred, as being computationally faster and usually providing more
information on which to assess the results. In many problems the three fits will not differ significantly
for practical purposes.

Some of the routines based on the !, norm do not minimize the norm itself but instead minimize some
(intuitively acceptable) measure of smoothness subject to the norm being less than a user-specified
threshold. These routines fit with cubic or bicubic splines (see (10) and (14) below) and the smoothing
measures relate to the size of the discontinuities in their third derivatives. A much more automatic fitting
procedure follows from this approach.

2.1.2 Weighting of data points

The use of the above norms also assumes that the data values y, are of equal (absolute) accuracy. Some
of the routines enable an allowance to be made to take account of differing accuracies. The allowance
takes the form of ‘weights’ applied to the y-values so that those values known to be more accurate have a
greater influence on the fit than others. These weights, to be supplied by the user, should be calculated
from estimates of the absolute accuracies of the y-values, these estimates being expressed as standard
deviations, probable errors or some other measure which has the same dimensions as y. Specifically, for
each y, the corresponding weight w, should be inversely proportional to the accuracy estimate of y,. For
example, if the percentage accuracy is the same for all y,., then the absolute accuracy of y, is proportional
to y, (assuming y, to be positive, as it usually is in such cases) and so w, = K/y,,forr=1,2,...,m, for
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an arbitrary positive constant K. (This definition of weight is stressed because often weight is defined as
the square of that used here.) The norms (2), (3) and (4) above are then replaced respectively by

> lwel, (5)
r=1

m
> wie, (6)
r=1

and
mrax|w,c,|. (M)

Again it is the square of (6) which is used in practice rather than (6) itself.

2.2 Curve Fitting

When, as is commonly the case, the mathematical form of the fitting function is immaterial to the
problem, polynomials and cubic splines are to be preferred because their simplicity and ease of handling
confer substantial benefits. The cubic spline is the more versatile of the two. It consists of a number of
cubic polynomial segments joined end to end with continuity in first and second derivatives at the joins.
The third derivative at the joins is in general discontinuous. The z-values of the joins are called knots,
or, more precisely, interior knots. Their number determines the number of coefficients in the spline, just
as the degree determines the number of coefficients in a polynomial.

2.2.1 Representation of polynomials

Two different forms for representing a polynomial are used in different routines. One is the usual power-
series form

f(x) = by 4 bz +byx® + ...+ bz (8)

The other is the Chebyshev series form
f(2) = 3a,Ty(z) + a, Ty (2) + a,Ty(z) + ... + 0, Ty, (2), (9)

where T;(z) is the Chebyshev polynomial of the first kind of degree i (see Cox and Hayes [1], page 9),
and where the range of z has been normalised to run from —1 to +1. The use of either form leads
theoretically to the same fitted polynomial, but in practice results may differ substantially because of the
effects of rounding error. The Chebyshev form is.to be preferred, since it leads to much better accuracy
in general, both in the computation of the coefficients and in the subsequent evaluation of the fitted
polynomial at specified points. This form also has other advantages: for example, since the later terms
in (9) generally decrease much more rapidly from left to right than do those in (8), the situation is more
often encountered where the last terms are negligible and it is obvious that the degree of the polynomial
can be reduced (note that on the interval —1 < z <1 for all ¢, Tj(x) attains the value unity but never
exceeds it, so that the coefficient a; gives directly the maximum value of the term containing it). If the
power-series form is used it is most advisable to work with the variable £ normalised to the range —1
to +1, carrying out the normalisation before entering the relevant routine. This will often substantially
improve computational accuracy.

2.2.2 Representation of cubic splines

A cubic spline is represented in the form
f(z) = e Ny(2) + ¢y Ny(2z) + ... + ¢, Ny (2), (10)

where N;(z), for ¢ = 1,2,...,p, is a normalised cubic B-spline (see Hayes [2]). This form, also, has
advantages of computational speed and accuracy over alternative representations.
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2.3 Surface Fitting

There are now two independent variables, and we shall denote these by  and y. The dependent variable,
which was denoted by y in the curve-fitting case, will now be denoted by f. (This is a rather different
notation from that indicated for the general-dimensional problem in the first paragraph of Section 2.1,
but it has some advantages in presentation.)

Again, in the absence of contrary indications in the particular application being considered, polynomials
and splines are the approximating functions most commonly used.

2.3.1 Representation of bivariate polynomials

The type of bivariate polynomial currently considered in the chapter can be represented in either of the

two forms
flz,y) = ZZb”x v, (11)

i=0 j=0

and

ZZ 0, Ti(2)T; (), (12)

1=0 j=0

where T;(z) is the Chebyshev polynomial of the first kind of degree i in the argument z (see Cox and
Hayes [1] page 9), and correspondingly for T;(y). The prime on the two summation signs, following
standard convention, indicates that the first term in each sum is halved, as shown for one variable in
equation (9). The two forms (11) and (12) are mathematically equivalent, but again the Chebyshev form
is to be preferred on numerical grounds, as discussed in Section 2.2.1.

2.3.2 Bicubic splines: definition and representation

The bicubic spline is defined over a rectangle R in the (z,y) plane, the sides of R being parallel to the
z- and y-axes. R is divided into rectangular panels, again by lines parallel to the axes. Over each panel
the bicubic spline is a bicubic polynomial, that is it takes the form

3 3

3 a,e. (13)

1=0 j=0

Each of these polynomials joins the polynomials in adjacent panels with continuity up to the second
derivative. The constant z-values of the dividing lines parallel to the y-axis form the set of interior knots
for the variable z, corresponding precisely to the set of interior knots of a cubic spline. Similarly, the
constant y-values of dividing lines parallel to the z-axis form the set of interior knots for the variable y.
Instead of representing the bicubic spline in terms of the above set of bicubic polynomials, however, it is
represented, for the sake of computational speed and accuracy, in the form

flz,y) =D i My(2)N;(v), (14)

i=1j=1

where M;(z), fori=1,2,...,p, and N; (y), for j = 1,2,...,q, are normalised B-splines (see Hayes and
Halliday [4] for further details of bicubic splines and Hayes [2] for normalised B-splines).

2.4 General Linear and Nonlinear Fitting Functions

We have indicated earlier that, unless the data-fitting application under consideration specifically requires
some other type of fitting function, a polynomial or a spline is usually to be preferred. Special routines
for these functions, in one and in two variables, are provided in this chapter. When the application does
specify some other fitting function, however, it may be treated by a routine which deals with a general
linear function, or by one for a general nonlinear function, depending on whether the coeflicients in the
given function occur linearly or nonlinearly.

The general linear fitting function can be written in the form

(@) = c161(2) + c265(z) + ...+ ¢,8,(2), | (15)
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where z is a vector of one or more independent variables, and the ¢; are any given functions of these
variables (though they must be linearly independent of one another if there is to be the possibility of
a unique solution to the fitting problem). This is not intended to imply that each ¢; is necessarily a
function of all the variables: we may have, for example, that each ¢, is a function of a different single
variable, and even that one of the ¢, is a constant. All that is required is that a value of each ¢;(z) can
be computed when a value of each independent variable is given.

When the fitting function f(z) is not linear in its coefficients, no more specific representation is available
in general than f(z) itself. However, we shall find it helpful later on to indicate the fact that f(z) contains
a number of coefficients (to be determined by the fitting process) by using instead the notation f(z;c),
where ¢ denotes the vector of coefficients. An example of a nonlinear fitting function is

f(z;¢) = ¢ + cyexp(—cyz) + c3 exp(—csz), (16)

which is in one variable and contains five coefficients. Note that here, as elsewhere in this Chapter
Introduction, we use the term ‘coefficients’ to include all the quantities whose values are to be determined
by the fitting process, not just those which occur linearly. We may observe that it is only the presence
of the coefficients ¢, and ¢ which makes the form (16) nonlinear. If the values of these two coefficients
were known beforehand, (16) would instead be a linear function which, in terms of the general linear
form (15), has p = 3 and

¢,(z) =1, ¢,(z) = exp(—c,z), and ¢3(z) = exp(—c5z).

We may note also that polynomials and splines, such as (9) and (14), are themselves linear in their
coefficients. Thus if, when fitting with these functions, a suitable special routine is not available (as when
more than two independent variables are involved or when fitting in the /; norm), it is appropriate to use
a routine designed for a general linear function.

2.5 Constrained Problems

So far, we have considered only fitting processes in which the values of the coefficients in the fitting
function are determined by an unconstrained minimization of a particular norm. Some fitting problems,
however, require that further restrictions be placed on the determination of the coefficient values.
Sometimes these restrictions are contained explicitly in the formulation of the problem in the form of
equalities or inequalities which the coefficients, or some function of them, must satisfy. For example, if
the fitting function contains a term Aexp(—kz), it may be required that k& > 0. Often, however, the
equality or inequality constraints relate to the value of the fitting function or its derivatives at specified
values of the independent variable(s), but these too can be expressed in terms of the coefficients of the
fitting function, and it is appropriate to do this if a general linear or nonlinear routine is being used.
For example, if the fitting function is that given in (10), the requirement that the first derivative of the
function at £ = z, be non-negative can be expressed as

¢y Ni(zq) + ¢ No(2g) + ...+ ¢, Ny(zg) > 0, (17)

where the prime denotes differentiation with respect to z and each derivative is evaluated at £ = ;. On
the other hand, if the requirement had been that the derivative at z = z be exactly zero, the inequality
sign in (17) would be replaced by an equality.

Routines which provide a facility for minimizing the appropriate norm subject to such constraints are
discussed in Section 3.6.

2.6 Padé Approximants

A Padé approximant to a function f(z) is a rational function (ratio of two polynomials) whose Maclaurin-
series expansion is the same as that of f(z) up to and including the term in z¥, where k is the sum of
the degrees of the numerator and denominator of the approximant. Padé approximation can be a useful
technique when values of a function are to be obtained from its Maclaurin series but convergence of the
series is unacceptably slow or even non-existent.
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3 Recommendations on Choice and Use of Available Routines

Note. Refer to the Users’ Note for your implementation to check that a routine is available.

3.1 General

The choice of a routine to treat a particular fitting problem will depend first of all on the fitting function
and the norm to be used. Unless there is good reason to the contrary, the fitting function should be a
polynomial or a cubic spline (in the appropriate number of variables) and the norm should be the [, norm
(leading to the least-squares fit). If some other function is to be used, the choice of routine will depend
on whether the function is nonlinear (in which case see Section 3.5.2) or linear in its coefficients (see
Section 3.5.1), and, in the latter case, on whether the {, I, or I, norm is to be used. The latter section is
appropriate for polynomials and splines, too, if the I; or [, norm is preferred, with one exception: there
is a special routine for fitting polynomial curves in the unweighted [, norm (see Section 3.2.3).

In the case of a polynomial or cubic spline, if there is only one independent variable, the user should
choose a spline (Section 3.3) when the curve represented by the data is of complicated form, perhaps with
several peaks and troughs. When the curve is of simple form, first try a polynomial (see Section 3.2) of
low degree, say up to degree 5 or 6, and then a spline if the polynomial fails to provide a satisfactory
fit. (Of course, if third-derivative discontinuities are unacceptable to the user, a polynomial is the only
choice.) If the problem is one of surface fitting, the polynomial routine (Section 3.4.1) should be tried
first if the data arrangement happens to be appropriate, otherwise one of the spline routines (Section
3.4.2). If the problem has more than two independent variables, it may be treated by the general linear
routine in Section 3.5.1, again using a polynomial in the first instance.

Another factor which affects the choice of routine is the presence of constraints, as previously discussed
in Section 2.5. Indeed this factor is likely to be overriding at present, because of the limited number of
routines which have the necessary facility. Consequently those routines have been grouped together for
discussion in Section 3.6.

3.1.1 Data considerations

A satisfactory fit cannot be expected by any means if the number and arrangement of the data points
do not adequately represent the character of the underlying relationship: sharp changes in behaviour, in
particular, such as sharp peaks, should be well covered. Data points should extend over the whole range
of interest of the independent variable(s): extrapolation outside the data ranges is most unwise. Then,
with polynomials, it is advantageous to have additional points near the ends of the ranges, to counteract
the tendency of polynomials to develop fluctuations in these regions. When, with polynomial curves, the
user can precisely choose the z-values of the data, the special points defined in Section 3.2.2 should be
selected. With polynomial surfaces, each of these same z-values should, where possible, be combined
with each of a corresponding set of y-values (not necessarily with the same value of n), thus forming a
rectangular grid of (z,y)-values. With splines the choice is less critical as long as the character of the
relationship is adequately represented. All fits should be tested graphically before accepting them as
satisfactory.

For this purpose it should be noted that it is not sufficient to plot the values of the fitted function only at
the data values of the independent variable(s); at the least, its values at a similar number of intermediate
points should also be plotted, as unwanted fluctuations may otherwise go undetected. Such fluctuations
are the less likely to occur the lower the number of coefficients chosen in the fitting function. No firm
guide can be given, but as a rough rule, at least initially, the number of coefficients should not exceed
half the number of data points (points with equal or nearly equal values of the independent variable, or
both independent variables in surface fitting, counting as a single point for this purpose). However, the
situation may be such, particularly with a small number of data points, that a satisfactorily close fit to
the data cannot be achieved without unwanted fluctuations occurring. In such cases, it is often possible
to improve the situation by a transformation of one or more of the variables, as discussed in the next
section: otherwise it will be necessary to provide extra data points. Further advice on curve fitting is
given in Cox and Hayes [1] and, for polynomials only, in Hayes [3]. Much of the advice applies also to
surface fitting; see also the routine documents.
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3.1.2 Transformation of variables

Before starting the fitting, consideration should be given to the choice of a good form in which to
deal with each of the variables: often it will be satisfactory to use the variables as they stand, but
sometimes the use of the logarithm, square root, or some other function of a variable will lead to a
better-behaved relationship. This question is customarily taken into account in preparing graphs and
tables of a relationship and the same considerations apply when curve or surface fitting. The practical
context will often give a guide. In general, it is best to avoid having to deal with a relationship whose
behaviour in one region is radically different from that in another. A steep rise at the left-hand end of a
curve, for example, can often best be treated by curve fitting in terms of log(z + ¢) with some suitable
value of the constant ¢. A case when such a transformation gave substantial benefit is discussed in page
60 of Hayes [3]. According to the features exhibited in any particular case, transformation of either
dependent variable or independent variable(s) or both may be beneficial. When there is a choice it is
usually better to transform the independent variable(s): if the dependent variable is transformed, the
weights attached to the data points must be adjusted. Thus (denoting the dependent variable by y, as
in the notation for curves) if the y, to be fitted have been obtained by a transformation y = g(Y') from
original data values Y,, with weights W, for r = 1,2,...,m, we must take

w, =W, /(dy/dY), (18)

where the derivative is evaluated at Y,.. Strictly, the transformation of Y and the adjustment of weights
are valid only when the data errors in the Y, are small compared with the range spanned by the Y, but
this is usually the case.

3.2 Polynomial Curves
3.2.1 Least-squares polynomials: arbitrary data points

E02ADF fits to arbitrary data points, with arbitrary weights, polynomials of all degrees up to a maximum
degree k, which is a choice. If the user is seeking only a low-degree polynomial, up to degree 5 or 6 say,
k = 10 is an appropriate value, providing there are about 20 data points or more. To assist in deciding the
degree of polynomial which satisfactorily fits the data, the routine provides the root-mean-square residual
s; for all degrees ¢ = 1,2,...,k. In a satisfactory case, these s, will decrease steadily as ¢ increases and
then settle down to a fairly constant value, as shown in the example

i s;

0 3.5215
1 0.7708
2 0.1861
3 0.0820
4 0.0554
5 0.0251
6 0.0264
7 0.0280
8 0.0277
9 0.0297
0

10 0.0271

If the s; values settle down in this way, it indicates that the closest polynomial approximation justified by
the data has been achieved. The degree which first gives the approximately constant value of s; (degree
5 in the example) is the appropriate degree to select. (Users who are prepared to accept a fit higher
than sixth degree should simply find a high enough value of k to enable the type of behaviour indicated
by the example to be detected: thus they should seek values of k for which at least 4 or 5 consecutive
values of s; are approximately the same.) If the degree were allowed to go high enough, s; would, in most
cases, eventually start to decrease again, indicating that the data points are being fitted too closely and
that undesirable fluctuations are developing between the points. In some cases, particularly with a small
number of data points, this final decrease is not distinguishable from the initial decrease in s;. In such
cases, users may seek an acceptable fit by examining the graphs of several of the polynomials obtained.
Failing this, they may (a) seek a transformation of variables which improves the behaviour, (b) try fitting
a spline, or (c) provide more data points. If data can be provided simply by drawing an approximating
curve by hand and reading points from it, use the points discussed in Section 3.2.2.
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3.2.2 Least-squares polynomials: selected data points

When users are at liberty to choose the z-values of data points, such as when the points are taken from
a graph, it is most advantageous when fitting with polynomials to use the values z, = cos(wr/n), for
r=0,1,...,n for some value of n, a suitable value for which is discussed at the end of this section. Note
that these z, relate to the variable z after it has been normalised so that its range of interest is —1 to
+1. E02ADF may then be used as in Section 3.2.1 to seek a satisfactory fit. However, if the ordinate
values are of equal weight, as would often be the case when they are read from a graph, E02AFF is to
be preferred, as being simpler to use and faster. This latter algorithm provides the coefficients a;, for
j=0,1,...,n, in the Chebyshev series form of the polynomial of degree n which interpolates the data.
In a satisfactory case, the later coefficients in this series, after some initial significant ones, will exhibit a
random behaviour, some positive and some negative, with a size about that of the errors in the data or
less. All these ‘random’ coefficients should be discarded, and the remaining (initial) terms of the series
be taken as the approximating polynomial. This truncated polynomial is a least-squares fit to the data,
though with the point at each end of the range given half the weight of each of the other points. The
following example illustrates a case in which degree 5 or perhaps 6 would be chosen for the approximating
polynomial.

J a;
0 9.315
1 -8.030
2 0.303
3 —1.483
4 0.256
5 —0.386
6 0.076
7 0.022
8 0.014
9 0.005
10 0.011
11 -0.040
12 0.017
13 —0.054
14 0.010
15 —-0.034
16 -0.001

Basically, the value of n used needs to be large enough to exhibit the type of behaviour illustrated in
the above example. A value of 16 is suggested as being satisfactory for very many practical problems,
the required cosine values for this value of n being given in Cox and Hayes [1], page 11. If a satisfactory
fit is not obtained, a spline fit should be tried, or, if the user is prepared to accept a higher degree
of polynomial, n should be increased: doubling n is an advantageous strategy, since the set of values
cos(mr/n), for r = 0,1,...,n, contains all the values of cos(wrr/2n), for » = 0,1,...,2n, so that the old
data set will then be re-used in the new one. Thus, for example, increasing n from 16 to 32 will require
only 16 new data points, a smaller number than for any other increase of n. If data points are particularly
expensive to obtain, a smaller initial value than 16 may be tried, provided the user is satisfied that the
number is adequate to reflect the character of the underlying relationship. Again, the number should be
doubled if a satisfactory fit is not obtained.

3.2.3 Minimax space polynomials

E02ACF determines the polynomial of given degree which is a minimax space fit to arbitrary data points
with equal weights. (If unequal weights are required, the polynomial must be treated as a general linear
function and fitted using E02GCF.) To arrive at a satisfactory degree it will be necessary to try several
different degrees and examine the results graphically. Initial guidance can be obtained from the value of
the maximum residual: this will vary with the degree of the polynomial in very much the same way as
does s; in least-squares fitting, but it is much more expensive to investigate this behaviour in the same
detail.

The algorithm uses the power-series form of the polynomial so for numerical accuracy it is advisable to
normalise the data range of z to [—1,1].
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3.3 Cubic Spline Curves
3.3.1 Least-squares cubic splines

E02BAF fits to arbitrary data points, with arbitrary weights, a cubic spline with interior knots specified
by the user. The choice of these knots so as to give an acceptable fit must largely be a matter of trial and
error, though with a little experience a satisfactory choice can often be made after one or two trials. It is
usually best to start with a small number of knots (too many will result in unwanted fluctuations in the
fit, or even in there being no unique solution) and, examining the fit graphically at each stage, to add a
few knots at a time at places where the fit is particularly poor. Moving the existing knots towards these
places will also often improve the fit. In regions where the behaviour of the curve underlying the data is
changing rapidly, closer knots will be needed than elsewhere. Otherwise, positioning is not usually very
critical and equally-spaced knots are often satisfactory. See also the next section, however.

A useful feature of the routine is that it can be used in applications which require the continuity to
be less than the normal continuity of the cubic spline. For example, the fit may be required to have a
discontinuous slope at some point in the range. This can be achieved by placing three coincident knots at
the given point. Similarly a discontinuity in the second derivative at a point can be achieved by placing
two knots there. Analogy with these discontinuous cases can provide guidance in more usual cases: for
example, just as three coincident knots can produce a discontinuity in slope, so three close knots can
produce a rapid change in slope. The closer the knots are, the more rapid can the change be.

An example set of data is given in Figure 1. It is a rather tricky set, because of the scarcity of data on
the right, but it will serve to illustrate some of the above points and to show some of the dangers to be
avoided. Three interior knots (indicated by the vertical lines at the top of the diagram) are chosen as
a start. We see that the resulting curve is not steep enough in the middle and fluctuates at both ends,
severely on the right. The spline is unable to cope with the shape and more knots are needed.

Figure 1

In Figure 2, three knots have been added in the centre, where the data shows a rapid change in behaviour,
and one further out at each end, where the fit is poor. The fit is still poor, so a further knot is added in
this region and, in Figure 3, disaster ensues in rather spectacular fashion.

The reason is that, at the right-hand end, the fits in Figure 1 and 2 have been interpreted as poor simply
because of the fluctuations about the curve underlying the data (or what it is naturally assumed to be).
But the fitting process knows only about the data and nothing else about the underlying curve, so it is
important to consider only closeness to the data when deciding goodness of fit.

Thus, in Figure 1, the curve fits the last two data points quite well compared with the fit elsewhere, so
no knot should have been added in this region. In Figure 2, the curve goes exactly through the last two
points, so a further knot is certainly not needed here.
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Figure 2

Figure 3

Figure 4 shows what can be achieved without the extra knot on each of the flat regions. Remembering
that within each knot interval the spline is a cubic polynomial, there is really no need to have more than
one knot interval covering each flat region.

What we have, in fact, in Figures 2 and 3 is a case of too many knots (so too many coefficients in the
spline equation) for the number of data points. The warning in the second paragraph of Section 2.1 was
that the fit will then be too close to the data, tending to have unwanted fluctuations between the data
points. The warning applies locally for splines, in the sense that, in localities where there are plenty
of data points, there can be a lot of knots, as long as there are few knots where there are few points,
especially near the ends of the interval. In the present example, with so few data points on the right,
just the one extra knot in Figure 2 is too many! The signs are clearly present, with the last two points
fitted exactly (at least to the graphical accuracy and actually much closer than that) and fluctuations
within the last two knot-intervals (cf. Figure 1, where only the final point is fitted exactly and one of the
wobbles spans several data points).

The situation in Figure 3 is different. The fit, if computed exactly, would still pass through the last two
data points, with even more violent fluctuations. However, the problem has become so ill-conditioned
that all accuracy has been lost. Indeed, if the last interior knot were moved a tiny amount to the right,
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Figure 4

there would be no unique solution and an error message would have been caused. Near-singularity
is, sadly, not picked up by the routine, but can be spotted readily in a graph, as Figure 3. B-spline
coefficients becoming large, with alternating signs, is another indication. However, it is better to avoid
such situations, firstly by providing, whenever possible, data adequately covering the range of interest,
and secondly by placing knots only where there is a reasonable amount of data.

The example here could, in fact, have utilised from the start the observation made in the second paragraph
of this section, that three close knots can produce a rapid change in slope. The example has two such
rapid changes and so requires two sets of three close knots (in fact, the two sets can be so close that one
knot can serve in both sets, so only five knots prove sufficient in Figure 4). It should be noted, however,
that the rapid turn occurs within the range spanned by the three knots. This is the reason that the six
knots in Figure 2 are not satisfactory as they do not quite span the two turns.

Some more examples to illustrate the choice of knots are given in Cox and Hayes [1].

3.3.2 Automatic fitting with cubic splines

E02BEF also fits cubic splines to arbitrary data points with arbitrary weights but itself chooses the
number and positions of the knots. The user has to supply only a threshold for the sum of squares of
residuals. The routine first builds up a knot set by a series of trial fits in the I, norm. Then, with the knot
set decided, the final spline is computed to minimize a certain smoothing measure subject to satisfaction
of the chosen threshold. Thus it is easier to use than EQ2BAF (see previous section), requiring only some
experimentation with this threshold. It should therefore be first choice unless the user has a preference
for the ordinary least-squares fit or, for example, wishes to experiment with knot positions, trying to keep
their number down (E02BEF aims only to be reasonably frugal with knots).

3.4 Polynomial and Spline Surfaces

3.4.1 Least-squares polynomials

E02CATF fits bivariate polynomials of the form (12), with k and [ specified by the user, to data points in a
particular, but commonly occurring, arrangement. This is such that, when the data points are plotted in
the plane of the independent variables  and y, they lie on lines parallel to the z-axis. Arbitrary weights

are allowed. The matter of choosing satisfactory values for k and [ is discussed in Section 8 of the routine
document.

3.4.2 Least-squares bicubic splines

E02DATF fits to arbitrary data points, with arbitrary weights, a bicubic spline with its two sets of interior
knots specified by the user. For choosing these knots, the advice given for cubic splines, in Section 3.3.1
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above, applies here too. (See also the next section, however.) If changes in the behaviour of the surface
underlying the data are more marked in the direction of one variable than of the other, more knots will
be needed for the former variable than the latter. Note also that, in the surface case, the reduction in
continuity caused by coincident knots will extend across the whole spline surface: for example, if three
knots associated with the variable z are chosen to coincide at a value L, the spline surface will have a
discontinuous slope across the whole extent of the line z = L.

With some sets of data and some choices of knots, the least-squares bicubic spline will not be unique. This
will not occur, with a reasonable choice of knots, if the rectangle R is well covered with data points: here
R is defined as the smallest rectangle in the (z,y) plane, with sides parallel to the axes, which contains
all the data points. Where the least-squares solution is not unique, the minimal least-squares solution is
computed, namely that least-squares solution which has the smallest value of the sum of squares of the
B-spline coefficients c;; (see the end of Section 2.3.2 above). This choice of least-squares solution tends
to minimize the risk of unwanted fluctuations in the fit. The fit will not be reliable, however, in regions
where there are few or no data points.

3.4.3 Automatic fitting with bicubic splines

E02DDF also fits bicubic splines to arbitrary data points with arbitrary weights but chooses the knot
sets itself. The user has to supply only a threshold for the sum of squares of residuals. Just like the
automatic curve EO2BEF (Section 3.3.2), EO2DDF then builds up the knot sets and finally fits a spline
minimizing a smoothing measure subject to satisfaction of the threshold. Again, this easier to use routine
is normally to be preferred, at least in the first instance.

E02DCEF is a very similar routine to EO2DDF but deals with data points of equal weight which lie on a
rectangular mesh in the (z,y) plane. This kind of data allows a very much faster computation and so is
to be preferred when applicable. Substantial departures from equal weighting can be ignored if the user
is not concerned with statistical questions, though the quality of the fit will suffer if this is taken too far.
In such cases, the user should revert to EO2DDF.

3.5 General Linear and Nonlinear Fitting Functions
3.5.1 General linear functions

For the general linear function (15), routines are available for fitting in all three norms. The least-squares
routines (which are to be preferred unless there is good reason to use another norm — see Section 2.1.1)
are in Chapter F04. The [ routine is EO2GCF. Two routines for the [, norm are provided, E02GAF
and EQO2GBF. Of these two, the former should be tried in the first instance, since it will be satisfactory in
most cases, has a much shorter code and is faster. EO02GBF, however, uses a more stable computational
algorithm and therefore may provide a solution when EQ2GAF fails to do so. It also provides a facility
for imposing linear inequality constraints on the solution (see Section 3.6).

All the above routines are essentially linear algebra routines, and in considering their use we need to view
the fitting process in a slightly different way from hitherto. Taking y to be the dependent variable and x
the vector of independent variables, we have, as for equation (1) but with each z,. now a vector,

&=y — f(z,), r=12,...,m.
Substituting for f(z) the general linear form (15), we can write this as

Cl¢1(.’l?,,.) + C2¢2(‘tr) +...+ cp¢p(zr) =Y — &, T= 1’ 2’ cey MM (19)

Thus we have a system of linear equations in the coefficients c¢;. Usually, in writing these equations, the ¢,
are omitted and simply taken as implied. The system of equations is then described as an overdetermined
system (since we must have m > p if there is to be the possibility of a unique solution to our fitting
problem), and the fitting process of computing the ¢; to minimize one or other of the norms (2), (3) and
(4) can be described, in relation to the system of equations, as solving the overdetermined system in that
particular norm. In matrix notation, the system can be written as

Pc=1y, (20)
where @ is the m by p matrix whose element in row r and column j is ¢;(z,), for r = 1,2,...,m;
j=1,2,...,p. The vectors ¢ and y respectively contain the coefficients c; and the data values y,..
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All four routines, however, use the stand